ОКП 42 2182

EHE ⓒ

ИЗМЕРИТЕЛЬ ПАРАМЕТРОВ ИЗОЛЯЦИИ «ПАРМА ТЕНЗОР-2»

РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ

РА1.016.001 РЭ

1

СОДЕРЖАНИЕ

	1 Hop	мативные ссылки	6
	2 Обс	эзначения и сокращения	7
	3 Tpe	бования безопасности	7
	4 Опи	сание измерителя и принципов его работы	7
4.1	Назначе	ение	7
4.2	Условия	я окружающей среды	8
4.3	Компле	ктность	8
4.4	Техниче	еские характеристики	9
	4.4.1	Гарантированные технические характеристики	9
	4.4.2	Справочные технические характеристики	10
4.5	Электро	литание измерителя	.11
4.6	Устрой	ство и работа измерителя	.11
	4.6.1	Конструкция	11
	4.6.2	Описание работы измерителя	12
4.7	Эксплуа	атационные ограничения	. 13
4.8	Распако	вывание и повторное упаковывание	. 14
4.9	Порядо	к установки	. 14
	5 Под	готовка к работе	. 14
5.1	Подгото	овка к работе	. 14
5.2	Средств	а измерений, инструмент и принадлежности	. 14
	6 Пор	ядок работы	.15
6.1	Меры б	езопасности	. 15
6.2	Внешни	и вид и расположение органов настройки и включения	. 15
6.3	Включе	ние измерителя	. 16
6.4	Описан	ие и порядок работы с измерителя	. 18
	6.4.1	Описание структуры меню пульта ДУ	18
	6.4.2	Основные настройки пульта ДУ	18
	6.4.3	Основные настройки ИБ с пульта ДУ	22
	6.4.4	Установка параметров ИБ с помощью пульта ДУ	24
	6.4.5	Просмотр информационных и статистических данных об измерителе с	
	помощы	о пульта ДУ	29
	7 Пор	рядок выполнения измерений	. 30
7.1	Режим «	«ДИЭЛЕКТРИЧЕСКИЕ́ ПАРАМЕТРЫ»	. 30
	7.1.2	Подрежим «ИЗМЕРЕНИЕ БЕЗ КОМПЕНСАЦИИ»	33
	7.1.3	Подрежим «ИЗМЕРЕНИЕ С КОМПЕНСАЦИЕЙ ПОМЕХ ОБЩЕГО	
	ВИДА»	-	34
	7.1.4	Подрежим «ИЗМЕРЕНИЕ С КОМПЕНСАЦИЕЙ ТОКОВ ВЛИЯНИЯ».	37
	7.1.5	Режим «КОЭФФИЦИЕНТ ТРАНСФОРМАЦИИ»	39
	7.1.6	Режим «МОЩНОСТЬ»	42
	7.1.7	Режим «ИМПЕНДАНС»	45
	7.1.8	Режим «ВЕКТОРЫ»	47
	7.1.9	Режим «РЕГИСТРАЦИЯ»	49
7.2	Порядо	к работ по окончании измерений	. 52
	8 Tex	ническое обслуживание	. 52
	9 Тек	ущий ремонт	. 52
	10 Xpa	нение	. 52
	11 Tpa	нспортирование	. 52
	12 Tap	а и упаковка	. 53
	13 Map	окирование и пломбирование	. 53

14	Гарантии изготовителя	53
15	Порядок предъявления рекламаций	53
16	Утилизация	53
17	Приложение А	54
18	Приложение Б	57

4

Внешний вид измерителя параметров изоляции «ПАРМА ТЕНЗОР-2» с принадлежностями

ВНИМАНИЕ!

Не приступайте к работе с прибором, не изучив содержание данного документа. В связи с постоянной работой по совершенствованию прибора в конструкцию могут быть внесены изменения, не влияющие на его технические характеристики и не отраженные в настоящем документе.

ВНИМАНИЕ!

В случае утери эксплуатационных документов: методики поверки и руководства по эксплуатации на измерители параметров изоляции «ПАРМА ТЕНЗОР-2» их можно скопировать на нашем сайте <u>www.parma.spb.ru</u>.

Настоящее руководство по эксплуатации предназначено для изучения измерителя параметров изоляции «ПАРМА ТЕНЗОР-2», выпускаемого по ТУ 4221-026-31920409-2015.

Руководство по эксплуатации содержит технические характеристики, описание принципа работы, порядок подготовки и ввода в эксплуатацию, а также другие сведения, необходимые для правильной эксплуатации измерителя параметров изоляции «ПАРМА ТЕНЗОР-2».

Предложения и замечания по работе измерителя параметров изоляции «ПАРМА ТЕНЗОР-2», а также по содержанию и оформлению эксплуатационной документации просьба направлять по адресу:

198216, Россия, г. Санкт-Петербург, Ленинский пр., д. 140 тел.: (812) 346-86-10, факс: (812) 376-95-03 E-mail: parma@parma.spb.ru, сайт: www.parma.spb.ru

1 НОРМАТИВНЫЕ ССЫЛКИ

ТР ТС 004/2011 О безопасности низковольтного оборудования.

ТР ТС 020/2011 Электромагнитная совместимость технических средств.

ГОСТ 12.2.091-2012 (МЭК 61010-1:2001) Безопасность электрического оборудования для измерения, управления и лабораторного применения. Часть 1. Общие требования.

ГОСТ 12.3.019-80 ССБТ Испытания и измерения электрические. Общие требования безопасности.

ГОСТ 14254-96 (МЭК 529-89) Степени защиты, обеспечиваемые оболочками (код IP).

ГОСТ 15150-69 Машины, приборы и другие технические изделия. Исполнения для различных климатических районов. Категории, условия эксплуатации, хранения и транспортирования в части воздействия климатических факторов внешней среды.

ГОСТ 22261-94 Средства измерений электрических и магнитных величин. Общие технические условия.

ГОСТ IEC 61010-2-032-2014 Безопасность электрических контрольноизмерительных приборов и лабораторного оборудования. Часть 2-032. Частные требования к ручным и управляемым вручную датчикам тока для электрических испытаний и измерений.

ГОСТ IEC 61010-2-033-2013 Безопасность электрических контрольноизмерительных приборов и лабораторного оборудования. Часть 2-033. Частные требования к портативным мультиметрам и другим измерительным приборам для бытового и профессионального применения, обеспечивающим измерение сетевого напряжения.

ГОСТ IEC 61140-2012 Защита от поражения электрическим током. Общие положения безопасности установок и оборудования.

ГОСТ Р 51288-99 Средства измерений электрических и магнитных величин. Эксплуатационные документы.

ГОСТ Р 51522.2.2-2011 Совместимость технических средств электромагнитная. Электрическое оборудование для измерения, управления и лабораторного применения. Часть 2-2. Частные требования к портативному оборудованию, применяемому для испытаний, измерений и мониторинга в низковольтных распределительных системах электроснабжения. Испытательные конфигурации, рабочие условия и критерии качества функционирования.

ГОСТ Р МЭК 61326-1-2014 Оборудование электрическое для измерения, управления и лабораторного применения. Требования электромагнитной совместимости. Часть 1. Общие требования.

ТУ 4221-026-31920409-2015 Измеритель параметров изоляции «ПАРМА ТЕН-ЗОР-2» Технические условия.

2 ОБОЗНАЧЕНИЯ И СОКРАЩЕНИЯ

2.1 В настоящем руководстве по эксплуатации применяются следующие обозначения и сокращения:

АКБ	_	Аккумуляторная батарея
Измеритель	_	Измеритель параметров изоляции «ПАРМА ТЕНЗОР-2»
ИБ	_	Измерительный блок
ПК	_	Персональный компьютер
ПО	_	Программное обеспечение
Пульт ДУ	_	Пульт дистанционного управления
Bluetooth	_	(от слов англ. Bluetooth) —универсальная технология беспроводной
		связи разнотипных микропроцессорных устройств локальной сети в диапазоне 2,4 ГГц
USB	_	(от англ. Universal Serial Bus) — последовательный интерфейс пере-
		дачи данных для среднескоростных и низкоскоростных периферий-
		ных устройств и питания периферийных устройств
SD-карта	_	Сменная карта флэш-памяти формата SD или SDHC емкостью от
		1 Гб до 32 Гб.

3 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

3.1 ИБ измерителя, в части защиты от поражения электрическим током, соответствует требованиям ТР ТС 004/2011, ГОСТ 12.2.091, категория монтажа (категория перенапряжения) – I (САТ. I), пульт ДУ – III (САТ. III). Класс защиты от поражения электрическим током по ГОСТ IEC 61140 – I, для пульта ДУ – III.

3.2 Степень защиты корпуса измерителя в закрытом состоянии от проникновения твердых предметов и влаги IP56 по ГОСТ 14254.

3.3 Требования к электрической прочности и сопротивлению изоляции измерителя не установлены в виду его конструктивных особенностей согласно п. 6.8.3 (абзац 2) ГОСТ 12.2.091.

3.4 При эксплуатации измерителя необходимо соблюдать «Правила технической эксплуатации электроустановок потребителей» для установок до 1000 В. К эксплуатации измерителя могут быть допущены лица, имеющие группу по электробезопасности не ниже III, аттестованные в установленном порядке на право проведения работ в электроустановках потребителей до 1000 В.

3.5 При проведении измерений необходимо соблюдать требования безопасности по ГОСТ 12.3.019.

3.6 Металлические части корпуса должны быть заземлены.

4 ОПИСАНИЕ ИЗМЕРИТЕЛЯ И ПРИНЦИПОВ ЕГО РАБОТЫ

4.1 Назначение

4.1.1 Полное торговое наименование, тип и обозначение: Измеритель параметров изоляции «ПАРМА ТЕНЗОР-2», ТУ 4221-026-31920409-2015.

4.1.2 Сведения о сертификации:

– Декларация о соответствии таможенного союза ТС № RU Д-RU.МЛ02.В.00085 принята на основании протоколов испытаний № 2998, № 2998/ЭМС, ИЦ ООО «СЗНТЦИС «Регламентсерт» сроком действия до 16.12.2020г.

- Измеритель параметров изоляции «ПАРМА ТЕНЗОР-2» зарегистрирован в Государственном реестре средств измерений под № 65931-16 Свидетельство об утверждении типа RU.C.34.004.А №64403 срок действии до 14.12.2021 г.

4.1.3 Измеритель параметров изоляции «ПАРМА ТЕНЗОР-2» предназначен для измерения напряжения, силы и частоты переменного тока, угла сдвига фаз, электрической емкости, тангенса угла потерь.

4.1.4 Два канала с независимыми коммутируемыми входами для подключения напряжения и/или тока, объединенные «общей землей», также позволяют использовать прибор при измерении электрической мощности, коэффициента трансформации, потерь холостого хода и потерь короткого замыкания, параметров импеданса.

4.1.5 Прибор предназначен для проведения измерений, как в лабораторных, так и в полевых условиях.

4.1.6 Нормальные условия применения в соответствии с 4.2.1 настоящего руководства.

4.1.7 Рабочие условия применения, в части климатических воздействий, в соответствии с 4.2.2 настоящего руководства.

4.2 Условия окружающей среды

4.2.1 Нормальные условия применения измерителя по ГОСТ 22261:

– номинальная температура окружающего воздуха плюс 20 °C. Допускаемое от-клонение температуры окружающего воздуха ± 5 °C.

- относительная влажность воздуха от 30 до 80 %;
- Атмосферное давление от 84 до 106 кПа.

4.2.2 Рабочие условия применения измерителя в части климатических воздействий соответствуют требованиям группы 4 по ГОСТ 22261:

- температура окружающего воздуха от минус 10 до плюс 40 °C;
- относительная влажность воздуха 98 % при 25 °C;
- атмосферное давление от 70 до 106,7 кПа.

4.2.3 Категории размещения измерителя по ГОСТ 15150 – 5, тип атмосферы II, высота над уровнем моря 2000 м.

4.2.4 По условиям транспортирования измеритель относиться к группе 4 по ГОСТ 22261. Предельные условия транспортирования измерителя:

- температура окружающего воздуха от минус 20 до плюс 55 °C;
- относительная влажность воздуха 90 % при 30 °C;
- атмосферное давление от 70 до 106,7 кПа.

4.2.5 В части механических воздействий, измеритель соответствует требованиями группы 4 по ГОСТ 22261.

4.2.6 В части электромагнитной совместимости измеритель соответствует требованиям помехоустойчивости оборудования, используемого в контролируемой электромагнитной обстановке, по ТР ТС 020/2011, ГОСТ Р 51522.1.

4.2.7 Радиопомехи от измерителя соответствуют требованиям 7.2 ГОСТ Р 51522.1 для оборудования класса А.

4.3 Комплектность

4.3.1 Состав комплекта измерителя приведен в таблице 1:

Таблица 1

Наименование	Количество
Измерительный блок со встроенным аккумулятором	1 шт.
Кабель сетевой	1 шт.
Кабели соединительные	5 шт.
Вставки плавкие	12 шт.
Карта памяти стандарта SD	1 шт.
Пульт дистанционного управления (с аккумуляторными батареями)	1 шт.
Сетевой блок питания с кабелем miniUSB	1 шт.
Сумка для аксессуаров	1 шт.
РА1.016.001 РЭ «Измерители параметров изоляции «ПАРМА ТЕНЗОР-2».	1 экз.*
Руководство по эксплуатации»	

8

Наименование	Количество
РА1.016.001 ПС «Пульт дистанционного управления Измерителя парамет-	1 экз.
ров изоляции «ПАРМА ТЕНЗОР-2». Паспорт»	
РА1.016.001 ФО «Измерители параметров изоляции «ПАРМА ТЕНЗОР-2».	1 экз.
Формуляр»	
МП 206.1-060-2016 «Измерители параметров изоляции «ПАРМА ТЕНЗОР-2».	1 экз.*
Методика поверки»	
Примечание - * - поставляется на электронном носителе.	

4.4 Технические характеристики

4.4.1 Гарантированные технические характеристики

4.4.1.1 Нормируемые метрологические характеристики приведены в таблице 2.

Таблица 2

Наименование характеристики	Значение
Диапазон измерений напряжения переменного тока про-	
мышленной частоты, В	от 1 до 500
Пределы допускаемой основной относительной погрешно-	
сти измерений напряжения переменного тока промышлен-	
ной частоты, %	$\pm 0,5$
Диапазоны измерений силы переменного тока промышлен-	
ной частоты, А	от 2·10 ⁻⁵ до 5
Пределы допускаемой основной относительной погрешно-	
сти измерений силы переменного тока промышленной час-	$\pm 0,5$
тоты, %	
Диапазон измерений угла сдвига фаз, °	от 0 до 360
Предел допускаемой основной абсолютной погрешности	
измерений угла сдвига фаз, °	$\pm 0,1$
Диапазон измерений частоты переменного тока, Гц	от 48 до 52
Пределы допускаемой основной абсолютной погрешности	
измерений частоты переменного тока, Гц	$\pm 0,02$
Диапазон измерений электрической емкостей, пФ	от 2 до 9900000
Диапазон допускаемых значений силы переменного тока	
промышленной частоты в цепи эталонного конденсатора и	
объекта измерений, А	от 2·10 ⁻⁵ до 5
Пределы допускаемой основной относительной погрешно-	
сти измерения электрической емкости, %	$\pm (0,5 \cdot (1 + \mathrm{tg} \delta \mathrm{x}))$
Диапазон измерений тангенса угла потерь tgбх	от 2·10 ⁻⁴ до 1
Пределы допускаемой абсолютной погрешности измерения	_
тангенса угла потерь	$\pm (2.10^{-4} + 0.0075 \cdot \text{tg}\delta x)$
Диапазон отображения электрической емкости, мкФ	от 9,9 до 16000
Диапазон отображения полного электрического сопротивле-	
ния, кОм	от 2·10 ⁻⁴ до 5
Диапазон отображения активного сопротивления объекта	
измерений индуктивного характера по последовательной	4
схеме замещения, кОм	от 2·10 ⁻⁴ до 5
Диапазон отображения активного сопротивления объекта	
измерений емкостного характера по параллельной схеме за-	A
мещения, кОм	от 2·10 ⁻⁴ до 300

Наименование характеристики	Значение
Диапазон отображения индуктивности, Гн	от 1·10 ⁻⁶ до 16
Диапазон отображения коэффициентов масштабного преоб-	
разования трансформаторов напряжения	от 1 до 500
Диапазон отображения активной мощности, кВт	от 0,0001 до 2,5
Диапазон отображения реактивной мощности, квар	от 0,0001 до 2,5
Диапазон отображения полной мощности, кВ·А	от 0,0001 до 2,5
Пределы допускаемой дополнительной погрешности изме-	
нений напряжения и силы переменного тока промышленной	
частоты от изменения температуры окружающей среды в	
диапазоне рабочих температур на каждый градус, в долях от	
пределов допускаемой основной погрешности	±0,01
Пределы допускаемой дополнительной погрешности изме-	
нений угла сдвига фаз от изменения температуры окружаю-	
щей среды в диапазоне рабочих температур на каждый	
градус, в долях от пределов допускаемой основной погреш-	$\pm 0,002$
ности	
Пределы допускаемой дополнительной погрешности изме-	
нений частоты переменного тока от изменения температуры	
окружающей среды в диапазоне рабочих температур на	
каждый градус, в долях от пределов допускаемой основной	
погрешности	$\pm 0,0004$
Нормальные условия применения:	
- температура окружающей среды, °С	от 15 до 25
- относительная влажность, %	от 30 до 80
- атмосферное лавление, кПа	от 84 ло 106

4.4.2 Справочные технические характеристики

4.4.2.1 Время измерения с усреднением – 5 с или 1 мин.

4.4.2.2 Гарантированная дальность управления ИБ от пульта ДУ с использованием Bluetooth – не менее 10 м.

4.4.2.3 Время непрерывной работы ИБ (питание от АКБ) – 36 часов.

4.4.2.4 Время непрерывной работы пульта ДУ при питании от АКБ – не менее 8 часов (в нормальных условиях применения).

4.4.2.5 Активные сопротивления входов «Uo», «Ux» – не более 1 МОм \pm 10 %.

4.4.2.6 Активные сопротивления входов "5 А" – 0,1 Ом ± 10% (без учета сопротивлений соединительных кабелей).

4.4.2.7 Параметры сопротивлений входов «Io», «Ix»:

– в диапазоне входных токов от 20 мкA до 400 мкA активное сопротивление – (6 ± 3) Ом;

– в диапазоне входных токов от 400 мкA до 100 мA активное сопротивление – (9 ± 3) Ом.

4.4.2.8 Электрическая емкость любого входа не превышает 100 пФ (без учета емкости соединительных кабелей).

4.4.2.9 Индуктивность любого входа составляет 300 мкГн ± 10 % (без учета емкости соединительных кабелей).

4.4.2.10 Измеритель выдерживает перегрузку в течение 1 минуты по напряжению в пределах двукратного конечного значения диапазона измерения.

4.4.2.11 Измеритель выдерживает перегрузку в течение 1 минуты переменным током в пределах двукратного конечного значения диапазона измерения

4.4.2.12 Время установления рабочего режима – не более 20 с с момента включения (с «привязанным» ИБ к пульту ДУ).

4.4.2.13 Средняя наработка на отказ – не менее 8000 ч.

4.4.2.14 Средний срок службы – не менее 8 лет.

4.4.2.15 Габаритные размеры кейса (в закрытом виде): 365х295х170 мм (с открытой крышкой 460 мм).

4.4.2.16 Габаритные размеры пульта ДУ: 156х98х36 мм.

4.4.2.17 Масса: не более 13 кг.

4.4.2.18 Нормальные условия применения в соответствии с 4.2.1 настоящего руководства.

4.5 Электропитание измерителя

4.5.1 Питание измерителя осуществляется:

- ИБ – основное только в автономном режиме от встроенного источника постоянного тока напряжением 6 В (тип АКБ), с возможностью подзаряда от сети 220 В;

- пульта ДУ – от встраиваемых источников питания (4 гальванических элемента типоразмера АА по 1,5 В каждый или аккумуляторные батареи NiMH 1,2 В типоразмера АА), с возможностью подзаряда от сети 220 В.

4.5.2 Для зарядки аккумуляторных батарей пульта ДУ предусмотрен разъем miniUSB и сетевой блок питания.

ВНИМАНИЕ! ПРИ ИСПОЛЬЗОВАНИИ БАТАРЕЕК (НЕЗАРЯЖАЕМЫХ ГАЛЬВА-НИЧЕСКИХ ЭЛЕМЕНТОВ) ПОДКЛЮЧЕНИЕ ИСТОЧНИКА ПИТАНИЯ К РАЗЪЕ-МУ miniUSB ПУЛЬТА ДУ ЗАПРЕЩЕНО!

4.5.3 Не применяйте для питания измерителя аккумуляторы с разной номинальной емкостью, а также деградированные элементы, так как это ведет к неоптимальной и неполной зарядке. Для работы с такими аккумуляторами следует использовать специализированные зарядные устройства.

4.5.4 Неправильная установка элементов питания не вызывает повреждения пульта ДУ.

4.6 Устройство и работа измерителя

4.6.1 Конструкция

4.6.1.1 Измеритель является автоматизированным электронным измерительным прибором, состоящим из измерительного блока и пульта ДУ.

4.6.1.2 Внешний вид измерителя приведен на рисунке 1.

4.6.1.3 ИБ представляет собой переносное устройство, выполненное в конструктиве кейса из ударопрочной пластмассы.

4.6.1.4 На лицевой панели ИБ расположены коммутационные разъемы, индикаторы состояния, предохранители, разъем для чтения SD карт памяти и сетевой разъем для зарядки встроенного аккумулятора.

4.6.1.5 Пульт ДУ выполнен в корпусе из ударопрочной пластмассы, на лицевой панели которого находится графический экран и функциональная клавиатура.

4.6.1.6 Связь между ИБ и пультом ДУ осуществляется по беспроводному интерфейсу Bluetooth.

Рисунок 1 Внешний вид измерителя

4.6.2 Описание работы измерителя

4.6.2.1 Принцип действия измерителя основан на использовании схемы измерительного моста переменного тока, в которой соотношение токов, протекающих через плечи моста, зависят лишь от параметров объекта измерения и эталонной емкости.

4.6.2.2 Величины значений токов образцового конденсатора и объекта измерений масштабируются и преобразуются в цифровой код для последующей обработки и вычисления векторных величин значений токов, емкости и тангенса угла диэлектрических потерь, как по «прямой», так и по «инверсной» схемам измерения, что обеспечивает измерение параметров изоляции объектов, как с изолированными, так и с заземленными выводам.

4.6.2.3 Два канала с независимыми коммутируемыми входами для подключения напряжения и/или тока, объединенные «общей землей», также позволяют использовать измеритель при измерении напряжения, силы и частоты переменного тока, электрической мощности, коэффициента трансформации, потерь холостого хода и потерь короткого замыкания, параметров импеданса.

4.6.2.4 Разделение каналов условное, и влияет только на знак измеряемого фазового сдвига, по всем электрическим характеристикам опорный и измерительный каналы идентичны.

4.6.2.5 Каждый канал «О» – опорный и «Х» – измерительный имеет по три раздельных входа:

Uo (Ux) – для измерения напряжений до 500 В.

- Io (Ix) – для измерения силы переменного тока до 100 мА.

Ix5A (Io5A) – для измерения силу переменного тока до 5А.

4.6.2.6 К входам измерителя необходимо подключать кабели в соответствии с маркировкой.

4.6.2.7 Для исключения неопределенности знака измеряемого фазового сдвига, угол фазового сдвига считается положительным, если сигнал на измерительном входе запаздывает по фазе относительно опорного.

4.6.2.8 Управление ИБ осуществляется по беспроводному интерфейсу Bluetooth (BT) при помощи пульта ДУ.

4.6.2.9 Пульт ДУ выполняет следующие функции:

- отображение на встроенном светодиодном графическом индикаторе всех вычисленных значений измеряемых параметров;

- выбор режима работы и запуск измерений;

задание параметров и коэффициентов для проведения измерений;

выключение измерительного блока или перевод его в ждущий режим.

4.6.2.10 Опционально работа с ИБ может выполняться с использованием ПК.

4.6.2.11 Процесс зарядки ИБ начинается после подключения сетевого напряжения, независимо от состояния ИБ (включен или выключен).

4.6.2.12 При выключенном ИБ примерный уровень заряда АКБ можно оценить с помощью индикатора — чем больше скважность мигания (т.е. чем большее время индикатор горит и меньшее не горит), тем выше уровень заряда. Для полностью заряженного аккумулятора индикатор горит почти непрерывно, для полностью разряженного – изредка вспыхивает.

4.6.2.13 Пульт ДУ может подзаряжаться от штатного адаптера питания, либо от любого ПК, имеющего на корпусе стандартные разъемы USB. В качестве источника питания можно использовать четыре гальванических элемента типа «АА» или сменные аккумуляторы.

4.6.2.14 Для заряда аккумуляторов пульта ДУ его нужно включить, *выключенный пульт ДУ аккумуляторы не заряжает.* Уровень заряда АКБ отображается на экране пульта ДУ в строке статуса, прекращение анимации означает окончание заряда.

4.6.2.15 Следует учесть, что при заряде АКБ от внешнего адаптера пульт ДУ игнорирует уставку времени автоотключения и может выключиться не ранее завершения заряда.

4.7 Эксплуатационные ограничения

4.7.1 Запрещается эксплуатация измерителя в условиях окружающей среды, отличных от установленных в 4.2 настоящего руководства.

4.7.2 Запрещается транспортирование и хранение измерителя в условиях окружающей среды, отличных от установленных в разделах 9 и 10 настоящего руководства.

4.7.3 Запрещается хранить измеритель с разряженными элементами питания.

4.7.4 Запрещается эксплуатировать измеритель с механическими повреждениями корпуса.

4.7.5 Запрещается подключать и отключать провода под напряжением.

4.7.6 Запрещается включать в сеть и подавать измерительные сигналы на разобранный измеритель.

ВНИМАНИЕ! ПИТАНИЕ ИЗМЕРИТЕЛЯ ВО ВРЕМЯ РАБОТЫ ДОЛЖНО ОСУЩЕСТВЛЯТЬСЯ ТОЛЬКО ОТ ВСТРОЕННОЙ АКБ!

4.8 Распаковывание и повторное упаковывание

4.8.1 Распаковывание и повторное упаковывание измерителя следует производить в следующей последовательности:

- Открыть кейс.

Из кейса извлечь:

- сумку с аксессуарами, (пультом ДУ, эксплуатационной документацией, упакованной в полиэтиленовый пакет (формуляр, паспорт на пульт ДУ, руководство по эксплуатации и методику поверки, кабелями соединительными, вставкам плавкими, картой SD, адаптером));

Из сумки извлечь:

- пульт ДУ;
- эксплуатационную документацию;
- кабели соединительные;
- адаптер.

4.8.2 Повторное упаковывание следует производить в обратной последовательности.

4.8.3 После распаковывания следует произвести внешний осмотр ИБ, пульта ДУ и кабелей соединительных:

- проверить наличие и целостность пломб на ИБ и пульте ДУ;

4.8.4 ИБ, пульт ДУ, кабели и комплектующие изделия не должны иметь видимых внешних повреждений корпуса и органов управления;

- внутри ИБ не должно быть незакрепленных предметов;
- изоляция не должна иметь трещин, обугливания и других повреждений;

- маркировка ИБ, комплектующих изделий и кабелей должна легко читаться и не иметь повреждений.

4.9 Порядок установки

4.9.1 Рабочее положение измерителя может быть любым. Место выбирается исходя из требований безопасности и длины соединительных кабелей.

5 ПОДГОТОВКА К РАБОТЕ

5.1 Подготовка к работе

5.1.1 При подготовке к работе необходимо соблюдать требования безопасности по ГОСТ 12.3.019.

5.1.2 Извлечь пульт ДУ из сумки, отвернуть винт на задней стенке, закрывающий отсек для элементов питания, и установить 4 аккумуляторных батареи в соответствии с маркировкой на крышке. Использовать элементы питания типоразмера AA, соответствующие требованиям ГОСТ Р МЭК 60086-1. Закрыть крышку батарейного отсека, завернуть винт.

5.1.3 Включить питание пульта ДУ и ИБ, дождаться его загрузки и убедиться, что индикатор отображает достаточный уровень заряда элементов питания. При необходимости произвести зарядку аккумуляторных батарей или заменить их. Зарядка осуществляется в соответствии с 4.6.2.14 настоящего руководства по эксплуатации.

5.1.4 Внести в формуляр дату ввода измерителя в эксплуатацию.

5.2 Средства измерений, инструмент и принадлежности

5.2.1 Средства поверки измерителя приведены в методике поверки на измеритель.

5.2.2 Для установки и замены аккумуляторных батарей необходима отвертка крестообразная.

6 ПОРЯДОК РАБОТЫ

6.1 Меры безопасности

6.1.1 При эксплуатации измерителя должны соблюдаться «Правила технической эксплуатации электроустановок потребителей» для установок до 1000 В.

6.1.2 К эксплуатации измерителя могут быть допущены лица, имеющие группу по электробезопасности не ниже III, аттестованные в установленном порядке на право проведения работ в электроустановках потребителей до 1000 В и изучившие настоящую инструкцию.

6.1.3 При проведении измерений необходимо соблюдать требования безопасности по ГОСТ 12.3.019.

6.1.4 Запрещается подключение входных цепей измерителя при наличии напряжения в исследуемых цепях.

6.1.5 <u>Питание ИБ во время работы с ним должно осуществляться только</u> от встроенной <u>АКБ</u>.

6.1.6 При измерениях по «прямой» схеме нужно обеспечить надежное заземление прибора гибким медным проводом сечением не менее 4 мм². Провод заземления

должен подключаться к клемме —, расположенной на лицевой панели измерительного блока.

6.1.7 При проведении измерений по «перевернутой» схеме следует считать, что на корпусе измерителя имеется повышенный потенциал и работать с ним можно только с использованием пульта ДУ.

6.1.8 Включение ИБ осуществляется при помощи кнопки непосредственно на лицевой панели ИБ, до подачи высокого напряжения на схему.

6.1.9 Пульт ДУ предназначен только для отключения ИБ, включение ИБ с пульта ДУ НЕВОЗМОЖНО.

6.1.10 При длительных перерывах в работе, а также во избежание автоотключения, рекомендуется переводить ИБ в ждущий режим.

6.2 Внешний вид и расположение органов настройки и включения

6.2.1 Внешний вид лицевой панели измерителя изображен на рисунке 2.

Рисунок 2

6.2.2 На лицевой панели измерителя размещены:

- два независимых измерительных канала – опорный и измерительный. Каждый канал имеет три входа – один для измерений напряжения переменного тока, обозначенный «Uo 500 B» и «Ux 500 B» и два канала для измерений силы переменного тока, обозначенные - «Io 5 A» и «Ix 5 A» и «Io 0,1 A» и «Ix 0,1 A» для измерения силы переменного тока в диапазоне от 0,1 до 5 A и от 20 мкА до 0,1 А.

- кнопка включение ИБ 🕛

функциональная кнопка

три светодиодных индикатора, зелёный 🚺, синий 🖤 и красный 🛄

- наружные предохранители – опорного и измерительного каналов

- розетка для подключения кабеля для подзарядки аккумульторов блока питания с наружным предохранителем;

- клеммы для подключения дискретного выхода с наружным предохранителем.

- клемма – для подключения провода заземления, при измерениях по «прямой» схеме;

- разъем для SD карты.

6.3 Включение измерителя

6.3.1 Включение измерителя осуществляется ТОЛЬКО «вручную».

6.3.2 Для включения питания необходимо кратковременно нажать кнопку на лицевой панели ИБ. При этом на короткое время загорятся все три светодиодных индикатора, а затем, спустя несколько секунд, после инициализации, зеленый индика-

тор 🎲 будет непрерывно мигать с частотой около 8 Гц, а синий индикатор 🥺 корот-

ко мигать с частотой около 2 Гц (с небольшими паузами). Красный индикатор (сигнализирующий об ошибках гореть не должен. Такое состояние индикаторов свидетельствует о том, что измеритель готов к работе и установке соединения по Bluetooth с пультом ДУ.

6.3.3 Если индикация отличается от описанной выше (в частности, горит или мигает красный индикатор (м) см. Приложение А.

6.3.4 Если в течение 5 минут Bluetooth соединение с ИБ не будет установлено, ИБ выключиться автоматически.

6.3.5 Включить питание пульта ДУ, нажав кнопку . Сразу после включения на экране пульта ДУ отображается заставка с логотипом Компании, как показано на рисунке 3, далее осуществляется процедура инициализации памяти и модуля Bluetooth, сопровождаемая соответствующим сообщением на экране пульта ДУ, рисунок 3а

Рисунок За

6.3.6 При отсутствии ошибок, после инициализации пульт ДУ переходит в ос-

новной режим отображения информации об измерителе, либо статуса измерителя (переключение между экранами осуществляется кнопками 🐼 и 🐼).

6.3.7 Соединение устанавливается по схеме «точка-точка», при этом Bluetoothадрес ИБ запоминается в энергонезависимой памяти пульта ДУ, т.е. «привязывается» к определенному ИБ. Номер привязанного ИБ отображается на основном экране информации об измерителе. Для быстрой установки соединения достаточно находясь в ос-

новном экране нажать кнопку Enter. Затем необходимо подтвердить запрос на соединение и дождаться установки связи.

Рисунок 5

6.3.8 Обычно эта процедура занимает 3-5 с, если ИБ не ответит на запрос (выключен или вне зоны действия), то пульт ДУ останется в состоянии ожидания. Для выхода из этого режима нажмите кнопку **Esc**.

6.3.9 Для поиска ИБ или «привязки» пульта ДУ к другому ИБ, находясь в основном экране информации об измерителе, нажмите кнопку 🐼 для перехода к экрану управления режимом работы Bluetooth, затем запустите процедуру поиска и установки

соединения, нажав кнопку Епter

6.3.10 Процесс сканирования продолжается около 30 с, при этом на экран выводится общее количество всех найденных Bluetooth-устройств (независимо от их типа). Если среди них будет один или несколько ИБ, будет выведено соответствующее окно выбора для установки связи, если среди найденных устройств ИБ не обнаружен, будет выведено соответствующее сообщение.

6.3.11 Для разрыва ранее установленного соединения с ИБ выберите нажатием кнопок , и пиктограмму-закладку работы с Bluetooth в основном меню (правая часть экрана), нажмите кнопку Enter, а затем повторным нажатием Enter под-твердите запуск процедуры разрыва связи.

Рисунок 8

6.3.12 При отсутствии связи ИБ с пультом ДУ, через 5 минут ожидания, ИБ автоматически отключается.

6.3.13 Информация на экране пульта ДУ, отображается в трех основных зонах:

- центральная и верхняя часть экрана – зона отображения информации текущего режима работы;

правая часть экрана – пиктограммы-закладки основного меню (присутствуют не всегда);

нижняя часть экрана – строка состояния измерителя.

6.3.14 В строке состояния (статуса) отображаются:

- анимационная пиктограмма состояния Bluetooth-соединения (например, нет соединения, поиск доступных устройств, установленное соединение);

- значок, отображающий уровень заряда АКБ измерительного блока (отображается только при наличии Bluetooth-соединения);

- текущее время (отображается только при наличии Bluetooth-соединения);

- анимационная пиктограмма усреднения-обновления показаний измерителя (отображается только в режимах просмотра вычисленных параметров, каждый интервал усреднения инвертируется и меняет направление вращения);

- анимационная пиктограмма процесса заряда АКБ, либо статический значок, отображающий уровень заряда аккумуляторной батареи пульта ДУ.

6.4 Описание и порядок работы с измерителя

6.4.1 Описание структуры меню пульта ДУ

6.4.1.1 Структура меню пульта ДУ – древовидная (Приложение Б), для перемещения используются стандартные кнопки стрелок, а также, по возможности,

кнопки **Enter** (выбор и переход в подменю) и **Esc** (отмена и выход в верхнее меню).

6.4.1.2 Практически наиболее значимыми являются три экрана, рисунок 9:

- основной экран отображения информации об измерителе (корневое меню);

- экран основных настроек;

- экран выбора режима работы измерителя.

6.4.1.3 За каждым экраном стоит система подменю.

6.4.1.4 Кнопка ^{моде} предназначена для быстрого переключения между этими экранами.

6.4.2 Основные настройки пульта ДУ

6.4.2.1 Экран основных настроек представляет собой графическое меню, позволяющее выбрать четыре пункта:

настройки пульта ДУ;

настройки ИБ;

- параметры;

информация и тесты.

Рисунок 10

6.4.2.4 Настройки пульта ДУ включают в себя три пункта. Для выбора конкретного пункта используйте кнопки 🐼, 🤡 и Ептег.

6.4.2.5 Пункт «ЯРКОСТЬ» позволяет выбрать один из пяти уровней яркости светодиодного индикатора пульта ДУ.

6.4.2.6 Регулировка уровня яркости, рисунок 12 осуществляется кнопками и и запоминается в энергонезависимой памяти пульта ДУ. Для выхода в верхний уровень меню используются кнопки Enter и Esc.

6.4.2.7 Следует учесть, что графический индикатор является одним из самых энергопотребляющих элементов пульта ДУ, так что снижение яркости индикации позволит значительно продлить время его работы.

6.4.2.8 Пункт «ЗВУКОВЫЕ СИГНАЛЫ» позволяет управлять громкостью звуковых сигналов, сопровождающих нажатие кнопок, и сигналов, свидетельствующих о каких-либо событиях или нештатных ситуациях, требующих реакции пользователя (включение-выключение, низкий уровень заряда АКБ, неисправность и т.п.).

6.4.2.9 Регулировка громкости раздельная для клавиатуры и сигнализации, для выбора и регулировки используются кнопки стрелок, а также

Enter и **Esc**, выбранный уровень громкости сохраняется в энергонезависимой памяти пульта ДУ.

Рисунок 12а

6.4.2.10 Пункт «УПРАВЛЕНИЕ ПИТАНИЕМ»

Рисунок 13

включает в себя три подпункта:

- элементы питания;
- режим заряда АКБ;
- автоотключение.

6.4.2.11 Для выбора конкретного подпункта используйте кнопки кнопок

6.4.2.12 Подпункт «ЭЛЕМЕНТЫ ПИТАНИЯ» определяет тип элементов, вставленных в батарейный отсек пульта ДУ.

6.4.2.13 Выбор элементов осуществляется кнопками • и влияет на корректный расчет уровня оставшегося заряда источников питания. Кроме того, выбор в качестве источника питания батареи блокирует функцию заряда АКБ при подключении внешнего питания от разъема USB. Автоматического распознавания используемых элементов питания в измерителе нет.

ЭЛЕМЕНТЫ ПИТАНИЯ	-	ЭЛЕМЕНТЫ ПИТА	ния
АККУМУЛЯТОРЫ: 🗆 Батареи: 🗹		АККУМУЛЯТОРЫ: Батареи:	
	Dreat The		

Рисунок 14а

6.4.2.14 Подпункт «РЕЖИМ ЗАРЯДА АКБ» определяет ток заряда при подключении внешнего питания от разъема USB.

ЭЛЕМЕНТЫ ПИТАНИЯ РЕЖИМ ЗАРЯДА АКС АВТООТКЛЮЧЕНИЕ
Рисунок 15

6.4.2.15 Выбор режима заряда элементов АКБ осуществляется кнопками

6.4.2.16 В фоновом режиме ток заряда составляет около (50) мА, что безопасно для порта USB любого компьютера и не приведет к критическим последствиям даже при заряде гальванических элементов. Полноценный заряд встроенных АКБ в этом режиме невозможен

РЕЖИМ	заряда	акб
ЧСКОРІ Фоновь	ЕННЫА: NA:	
Рис	сунок 15	a

6.4.2.17 . Для зарядки сильно разряженных АКБ используется ускоренный режим, в котором ток заряда составляет около (200) мА.

РЕЖИМ ЗАРЯДА	акб
УСКОРЕННЫЙ: Фоновый:	
Рисунок 15	б

6.4.2.18 Не рекомендуется использовать этот режим при подключении к ПК, во избежание перегрузки порта USB по току и категорически запрещается заряжать гальванические элементы, во избежание их разрушения и вытекания активного электролита. Для заряда АКБ в этом режиме в комплект измерителя включен адаптер питания с выходным током 1000 мА.

6.4.2.19 Подпункт «УПРАВЛЕНИЕ ПИТАНИЕМ» позволяет управлять временем автоотключения пульта ДУ.

ЯРКОСТЬ
ЗВУК.СИГНАЛЫ
УПР.ПИТАНИЕМ

Рисунок 16

6.4.2.20 С помощью кнопок 🖸 и 🔄 можно выбрать одну из пяти уставок времени автоотключения пульта ДУ (5мин-10мин-20мин-30мин-60мин), по истечении которой пульт ДУ выключается, а следом за ним через 5 минут выключается и измерительный блок, поскольку соединение по ВТ разрывается.

Рисунок 16а

6.4.2.21 Любая активность со стороны пользователя (нажатие любой кнопки или работа по USB) сбрасывает таймер автоотключения. Однако, при подключении внешнего адаптера питания к пульту ДУ и заряде АКБ автоотключения не произойдет до окончания процесса заряда. А соответственно не отключится и измерительный блок (если Bluetooth-соединение установлено). Поэтому, если нет необходимости в активных измерениях, разорвите Bluetooth-соединение или выключите ИБ при заряде АКБ пульта ДУ.

6.4.2.22 Все выбранные опции управления питанием сохраняются в энергонезависимой памяти пульта ДУ.

6.4.3 Основные настройки ИБ с пульта ДУ

6.4.3.1 Для перехода к настройкам ИБ с пульта ДУ выберите нажатием кнопок , ч п пиктограмму-закладку основных настроек ИБ в основном меню (правая часть экрана), нажмите кнопку enter, а затем используя кнопки стрелок и enter выберите пункт меню.

6.4.3.2 Настройки ИБ включают в себя пять пунктов, но при этом на индикаторе одновременно отображаются только четыре строки меню. Треугольные значки в углах индикатора указывают на возможность «прокрутки» и для просмотра дополнительных пунктов, не помещающихся на экран. Для выбора конкретного пункта используйте кнопки 🐼, 👽 и Enter.

6.4.3.3 Пункт «УСРЕДНЕНИЕ» позволяет выбрать один из двух фиксированных интервалов усреднения вычисляемых данных, что отразится на частоте обновления данных на индикаторе пульта ДУ измерителя.

6.4.3.4 Выбор времени усреднения осуществляется кнопками . Пульт ДУ обменивается данными с ИБ каждые 500 мс, но численные значения вычисляемых параметров обновляются только по мере готовности, по истечении интервала времени усреднения. О том, что данные на экране обновились, сигнализирует вращающийся круг в строке статуса индикатора, т.е. каждые 5 с или 1 мин он инвертируется и меняет направление вращения.

6.4.3.5 Первые два-три усредненных измерения после смены режима или времени усреднения недостоверны вследствие переходных процессов и особенностей накопления и обработки данных в измерителе

6.4.3.6 Пункт «ОТОБРАЖЕНИЕ» позволяет выбрать формат отображения тангенса угла потерь – в процентах или в относительных единицах

Рисунок 19

6.4.3.7 Пункт «ПРЕДУПРЕЖДЕНИЯ» позволяет разрешить или запретить вывод предупредительных сообщений в случае выхода уровней сигналов за границы метрологически достоверного диапазона.

Рисунок 20а

6.4.3.8 Пункт «ДИСКРЕТ» позволяет настроить работу дискретного выхода, клеммы которого расположены на лицевой панели, при критической ошибке измерительного блока. При этом возможно либо задать постоянное замыкание «сухого контакта» до устранения причины ошибки и перезагрузки прибора, либо не использовать дискретный выход <u>для сигнализации не</u>исправности.

6.4.3.9 Пункт «ЭНЕРГОСБЕРЕЖЕНИЕ» позволяет выбрать ждущий режим энергопотребления для ИБ.

6.4.3.10 После подтверждения выбора режима кнопкой ^{Enter} ИБ меняет свой статус, на экране пульта ДУ отображается изменение информации «Измерения» на «Ждущий».

Рисунок 23

6.4.3.11 В этом режиме активные измерения прекращаются, питание аналоговой части отключается, что позволяет снизить энергопотребление ИБ. Управляющий контроллер и модуль связи Bluetooth остаются в активном режиме и готовы к возобновлению работы, но разрыв Bluetooth-соединения (выключение пульта ДУ) не приводит к автоотключению измерительного блока. В этом состоянии ИБ может находиться до критического снижения напряжения АКБ, после чего отключится.

6.4.3.12 Кроме того, при отсутствии связи с пультом ДУ, в ждущий режим измеритель можно перевести кратковременным нажатием кнопки **Г** на лицевой панели ИБ.

6.4.3.13 При нахождении в ждущем режиме зеленый индикатор мигает с частотой около 2 Гц.

6.4.4 Установка параметров ИБ с помощью пульта ДУ

6.4.4.1 Для перехода к установкам параметров ИБ выберите, нажав и Enter, пиктограмму-закладку основных настроек в основном меню (правая часть экрана), нажмите кнопку Enter, а затем используя кнопки стрелок и Enter для выбора пункта меню.

- No Contraction (1997) (1997				
* 🖵 🖥	C。₅∵≣≯δ。 R ⊮⊞≯K			
Осн. настройки				

() () () () () () () () () () () () () (000		1		
* 🖵		C。∗⊒≯δ∘ R¥ [⊞] ×K	Ĭ		
Параметры					

Рисунок 24

6.4.4.2 Все настраиваемые параметры для проведения измерений собраны в четыре группы. Для выбора конкретной группы используйте кнопки 🕥, 🏵 и Enter.

ЧСТ.ВРЕМЕНИ				
УСТ.Co,tgCo,бо				
УСТ.КОЭФ·ТОВ				
УСТ.Ro и Rx				
Рисунок 25				

6.4.4.3 Пункт «УСТАНОВКА ВРЕМЕНИ» позволяет проконтролировать и устанавливать текущие время и дату.

Текущее время: 17:47:52			
Текущая дата: 06 ИЮЛ 2015			
Рисунок 26			

6.4.4.4 Установка необходимого разряда часов, минут или секунд осуществляется с помощью кнопок 🐼 и 🐼, а для инкремента-декремента соответствующего разряда кнопки 🐼, 🥸.

6.4.4.5 При нажатии кнопки **Enter** происходит передача заданного времени в ИБ. Следует учесть, что время в строке редактирования фиксируется (т.е.

стоит в то время, когда в измерителе оно идет вперед), а задержка при выполнении команды установки может составлять до 2 с, поэтому установить астрономически точное время с точностью до секунд может быть затруднительно.

6.4.4.6	При	нажатии	кнопки	Esc	происходит	возврат	В	верхний
уровень меню без о	обновл	ения време	ени.					

Рисунок 26а

6.4.4.7 Установка текущей даты выполняется аналогично установке времени.

Рисунок 27

Рисунок 27а

6.4.4.8 Пункт «УСТАНОВКА Со, tgCo, бо» позволяет проконтролировать и устанавливать параметры эталонной емкости и углов сдвига фаз. При этом обозначение tgCo подразумевает именно тангенс угла потерь образцового конденсатора, бо – поправку углов сдвига фаз «δ0» и «бХ0» для внешних цепей.

УСТ.ВРЕМЕНИ			
<u> 9CT.Co,tgCo,бо</u>			
УСТ.КОЭФ·ТОВ			
9CT.Ro и Rx			
Рисунок 28			

6.4.4.9 Установка емкости образцового конденсатора производится поразрядно. Для перемещения между разрядами используются кнопки 🐼 и 🐼, а для инкремента – декремента разрядов кнопки 🐼, 🐼.

Со= 100.006 пФ
tgCo = 0.00001
бо=-0.001°
бхо=+0.001°
Рисунок 29

6.4.4.10 Выбор единиц измерения емкости (пикофарады или нанофарады) происходит автоматически. По нажатию Enter происходит передача заданного параметра в ИБ, а по нажатию кнопки Esc – возврат в верхний уровень меню без сохранения редактирования.

6.4.4.11 Установка тангенса угла потерь образцового конденсатора также осуществляется поразрядно. Для перемещения между разрядами используются кнопки и , а для инкремента – декремента разрядов кнопки .

Рисунок 30а

6.4.4.12 Установка поправки углов сдвига фаз «б0» и «бХ0» предназначена для внешних цепей, включенных соответственно перед входами «О» и «Х», в режимах «Мощность», «Импеданс» и «Векторы».

	Со= 100.006 пФ
-	tgCo=0.00001
	бо=-0.001°
I	бхо=+0.001°
	Рисунок 31

6.4.4.13 При этом поправка «б0» суммируется с вычисленным углом сдвига фаз.

6.4.4.14 Для перемещения между разрядами используются кнопки 🖄 и , а для инкремента- декремента разрядов кнопки 🐼, 🐼. По нажатию происходит передача заданного параметра в измерительный блок, а по нажатию кнопки кнопк

Рисунок 31а

6.4.4.15 При этом поправка «бХО» вычитается из вычисленного угла сдвига фаз.

6.4.4.16 Для перемещения между разрядами используются кнопки 😒 и 🔄, а для инкремента-декремента разрядов кнопки 🐼, 🐼. По нажатию Enter происходит передача заданного параметра в измерительный блок, а по нажатию кнопки Esc – возврат в верхний уровень меню без сохранения редактирования.

YCT.BPEMEHN				
УСТ.Co,tgCo,бо				
УСТ.КОЭФ.ТОВ				
УСТ.Ro и Rx				
Рисунок 33				

6.4.4.18 Параметры «Кио» «Ких» – коэффициенты передачи внешних блоков, включенных между объектом измерения и соответствующими входами «Uo» и «Ux» измерителя используются в режимах «Коэффициент трансформации» и «Векторы».

Kuo=	0.100	Kuo= 0.100
Kux=	0.100	Kux= 0.100
Kio=	0.500	Kio= 0.500
Kix=	0.500	Kix= 0.500
	_	

Рисунок 34

6.4.4.19 Для перемещения между разрядами используются кнопки 😒 и , а для инкремента-декремента разрядов кнопки 🔄, Ӯ. По нажатию Enter происходит передача заданного параметра в ИБ, а по нажатию кнопки Esc – возврат на верхний уровень меню без сохранения редактирования.

Рисунок	34б

0000.103

3000.100

6.4.4.20 Параметры «Kio» «Kix» – коэффициенты передачи трансформаторов тока, подключенных к соответствующим входам «Io5A» и «Ix5A» измерителя. Используются в режимах «Мощность», «Импеданс» и «Векторы».

1			
Kuo=	0.100	Kuo=	0.100
Kux=	0.100	Kux=	0.100
Kio=	0.500	Kio=	0.500
Kix=	0.500	Kix=	0.500
	D	25	

Рисунок 35

6.4.4.21 Для перемещения между разрядами используются кнопки ☑ и ☑, а для инкремента-декремента разрядов – кнопки ☑, ☑. По нажатию происходит передача заданного параметра в ИБ, а по нажатию кнопки □ – возврат на верхний уровень меню без сохранения редактирования.

Коэф.передачи	Коэф.передачи	
внешнего блока	внешнего блока	
для входа Іо	для входа Іо	
2000.500	0000.50]	
Рисунок 35а		
Коэф.передачи	Коэф.передачи	
внешнего блока	внешнего блока	
для входа Іх	для входа I×	
2000.500	0000.503	
Рисунок 35б		

6.4.4.22 Пункт «УСТАНОВКА Ro и Rx» позволяет проконтролировать и установить значения сопротивлений защитных и дополнительных резисторов. Для выбора используйте кнопки **•**, **•** и **•**.

_			
	YCT.BPEMEHN		
	УСТ.Co,tgCo,бо		
	УСТ.КОЭФ·ТОВ		
	YCT.Ro и Rx		
Рисунок 36			

6.4.4.23 Дополнительные резисторы «Ro» и «Rx» включаются в первичные цепи трансформаторов тока соответствующих входов «Io5A» и «Ix5A» измерителя. Используются в режимах «Коэффициенты трансформации» и «Мощность».

Rпо= 1000.000 Ом	Rпо= 1000.000 Ом
Rпx= 1000.000 Ом	Rпx= 1000.000 Ом
Ro= 10.000 кОм	Ro= 10.000 кОм
Rx= 10.000 кОм	Rx= 10.000 кОм

Рисунок 37

6.4.4.24 Для перемещения между разрядами используются кнопки 🐼 и 🐼, а для инкремента-декремента разрядов – кнопки 🐼, 🐼. Выбор единиц измерения сопротивления (Ом или кОм) происходит автоматически. По нажатию Enter происходит передача введенного значения сопротивления в ИБ, а по нажатию кнопки Esc – возврат на верхний уровень меню без сохранения редактирования.

Рисунок 37а

6.4.4.25 Защитные резисторы «Rno» и «Rnx» используются в режиме «Диэлектрические параметры» при измерениях с компенсацией помех общего вида.

6.4.4.26 Для перемещения между разрядами используются кнопки ☑ и , а для инкремента-декремента разрядов – кнопки ☑, ☑. По нажатию происходит передача введенного значения сопротивления в ИБ, а по нажатию кнопки = возврат на верхний уровень меню без сохранения редактирования.

6.4.5 Просмотр информационных и статистических данных об измерителе с помощью пульта ДУ

6.4.5.1 Этот раздел меню позволяет просмотреть информационные и статистические данные об измерителе.

6.4.5.2 Для перехода выберите пиктограмму-закладку основных настроек Enter в основном меню (правая часть экрана), нажмите кнопку а затем, используя Enter выберите соответствующий пункт меню. кнопки стрелок и

Рисунок 39

6.4.5.3 Раздел включают в себя два пункта. Для выбора конкретного Enter пункта используйте кнопки кнопок 🕰 💀 и

Пункт «О ПРИБОРЕ» отображает информацию об ИБ и пульте

ДУ.

6.4.5.4

ИЗМЕРИТЕЛЬН. БЛОК	паирт да
СЕР. N 0005-2015 ВЕР. ПО: 3.005 Заряд Акб:6.18 в в работе:00096ч	ПРИВЯЗАН: N0005 BEP.ПО: 2.004 Заряд Акб:7.44B
Pr	исунок 40а

С помощью кнопок 🖄 и 🔄, можно выбрать один из двух 6.4.5.5 информационных экранов. В случае если связь с ИБ отсутствует, отображается только экран с информацией о пульте ДУ.

Пункт «СТАТИСТИКА ВТ» позволяет получить статистическую 6.4.5.6 информацию по беспроводному соединению Bluetooth: время сессии, количество принятых и потерянных пакетов, уровень сигнала.

Рисунок 40б

7 ПОРЯДОК ВЫПОЛНЕНИЯ ИЗМЕРЕНИЙ

7.1 Режим «ДИЭЛЕКТРИЧЕСКИЕ ПАРАМЕТРЫ»

7.1.1 Для измерения диэлектрических параметров возможны два основных варианта схемы подключения – «прямая» и «перевернутая».

7.1.2 Для измерения по «прямой» схеме подключите измеритель в соответствии с рисунком 41, где TV1 – исследуемый высоковольтный трансформатор, Сх – измеряемый объект (конденсатор), Со – образцовый конденсатор с высокопотенциальным выводом ВП и низкопотенциальным выводом НП.

Рисунок 41

7.1.3 Порядок подключения:

- центральный провод кабеля измерительного канала «Іх» подключите к низкопотенциальному выводу объекта измерения;

- центральный провод кабеля опорного канала «Іо» подключите к низкопотенциальному выводу образцового конденсатора;

- высоковольтный вывод испытательного трансформатора UBH присоедините к высоковольтным выводам объекта измерения Сх и образцового конденсатора Со;

- экраны измерительных кабелей к корпусам конденсатора и объекта НЕ ПОД-КЛЮЧАТЬ;

- корпуса измерительного блока и образцового конденсатора Со необходимо заземлить.

7.1.4 Для измерений по «перевернутой» схеме подключите измеритель в соответствии с рисунком 42.

Рисунок 42

7.1.5 Порядок подключения:

- ИБ измерителя установите на опорный изолятор, рассчитанный на испытательное напряжение;

- установите образцовый конденсатор на изолирующую подставку, рассчитанную на полное испытательное напряжение (если его конструкцией не предусмотрен иной способ изоляции);

убедитесь, что объект измерения заземлен;

- центральный провод кабеля измерительного канала «Іх» подключите к незаземленному выводу объекта измерения Сх;

- центральный провод кабеля опорного канала «Іо» подключите к низкопотенциальному выводу образцового конденсатора Со;

- экраны измерительных кабелей к корпусам конденсатора и объекта НЕ ПОД-КЛЮЧАТЬ;

- заземлите высокопотенциальный вывод образцового конденсатора Со;

- соедините высоковольтный вывод трансформатора с клеммой заземления корпуса ИБ и с корпусом образцового конденсатора Со.

7.1.6 При сборке схемы необходимо следить за тем, чтобы провода, идущие от высоковольтного вывода трансформатора TV1, а также оба экранированных кабеля, идущих к ИБ, располагались от заземленных предметов на расстоянии не менее 150 мм.

7.1.7 Нажмите кнопку Ш на лицевой панели ИБ и пульта ДУ, после включения измерителя и установления Bluetooth-соединения, при помощи кнопок ☑, ☑, ☑, ☑ выберите пункт «Диэлектрические параметры» в меню выбора режимов работы пульта ДУ и нажмите кнопку Еnter.

7.1.8 Ожидаемое значение входного тока измерительного канала «Х» измерителя определите по выражению:

$$I_X = U_P \cdot 314 \cdot C_X \tag{1}$$

Где:

- Ix – ток на входе измерительного канала «Х», А;

• Up - рабочее напряжение, B;

- Cx – ожидаемая емкость измеряемого объекта, Φ.

7.1.9 В случае если рассчитанное значение тока не превышает 100 мА, используйте для подключения измеряемого объекта вход «Ix», для больших значений токов используйте вход «Ix5A».

7.1.10 Используя кнопки 🗠, 😎, выберите вариант подключения измерительного входа и нажмите кнопку Enter.

7.1.11 Предусмотрены три варианта измерений диэлектрических параметров объектов:

без компенсации влияющих величин;

- с компенсацией токов влияния;

с компенсацией помех общего вида.

7.1.12 В зависимости от выбора оператора, измерения осуществляются за один, три или два этапа с индикацией результатов после каждого этапа, а также конечного расчетного результата.

7.1.13 Для выбора метода измерения и расчета диэлектрических параметров используйте кнопки 🐼 и 🐼, а затем нажмите кнопку Enter.

7.1.14 В случае, если режим выбирается первый раз, то после включения питания измерителя, будет предложено просмотреть значения параметров, влияющих на вычисляемые величины.

Рисунок 45

7.1.15 В данном случае это емкость Со и тангенс угла диэлектрических потерь tg(δo) образцового конденсатора, а также сопротивления защитных резисторов Rno и Rnx при выборе подрежима измерения с компенсацией помех общего вида.

Со= 1000.000 пФ tgCo= 0.00005	Со= 1000.000 пФ tgCo= 0.00005 Rno= 1000.000 Ом Rnx= 1000.000 Ом	УСТ.ВРЕМЕНИ УСТ.Со,tgСо,бо УСТ.КОЭФ•ТОВ УСТ.Ко и Rx
	Рисунок 45а	

7.1.16 При последующих переключениях запрос подтверждения заданных параметров выдаваться уже не будет.

7.1.17 Если реальные параметры собранной измерительной схемы совпадают с заданными, нажмите кнопку Enter, если необходима коррекция, используйте кнопку Esc для перехода к установке коэффициентов.

7.1.18 Кроме этого, до начала проведения измерений также необходимо выставить желаемое время усреднения результатов, принимая в расчет, что каждый этап из-

мерений продлится несколько интервалов усреднения.

7.1.2 Подрежим «ИЗМЕРЕНИЕ БЕЗ КОМПЕНСАЦИИ»

7.1.2.1 В подрежиме «ИЗМЕРЕНИЕ БЕЗ КОМПЕНСАЦИИ» вычисляемые данные обновляются в каждом этапе измерения (каждый интервал усреднения).

7.1.2.2 Рассчитываются и выводятся на экран пульта ДУ следующие величины:

- действующее значение силы тока опорного входа Іо;
- действующее значение силы тока измерительного входа Ix;
- вычисленное значение частоты f;
- угол диэлектрических потерь объекта измерения $\delta x = \phi x + \delta o;$
- тангенс угла диэлектрических потерь объекта измерения $D = tg(\delta x);$
- электрическая емкость объекта измерения $Cx = Co \cdot (Ix/Io) \cdot cos(\delta x);$
- рабочее напряжение Up = Io/($2\pi \cdot fx \cdot Co$).

<u> </u>	(/
Io=30.363 мкA		
Ix= 1.495мА		
Сx= 49.237нФ		
tg6=0.00369		
🖓 🖗 21:23 📖 🖲 C+		
	Рисуно	к 47

7.1.2.3 Для переключения между двумя экранами с рассчитанными параметрами используйте кнопки 🔄, 🔄.

7.1.2.4 Для сохранения измеренных величин на SD-карте нажмите кнопку , будет выведено информационное сообщение об успешной записи данных в файл «Dielectric.csv».

Запись данных		
в Файл		
Dielectric.csv		
успешна		
Рисунок 48		

7.1.2.5 В случае невозможности записи будет выведено информационное сообщение об ошибке записи. В этом случае следует убедиться в наличии и работоспособности SD-карты в слоте ИБ. Для возврата к отображению измеренных величин используйте кнопку [Esc].

Запись	данных
вф	айл
Dielect	ric.csv
Ошибка	записи

Рисунок 49

7.1.3 Подрежим «ИЗМЕРЕНИЕ С КОМПЕНСАЦИЕЙ ПОМЕХ ОБЩЕГО ВИДА»

7.1.3.1 Подрежим «ИЗМЕРЕНИЕ С КОМПЕНСАЦИЕЙ ПОМЕХ ОБЩЕГО ВИДА» используется при измерениях диэлектрических параметров высоковольтной изоляции под раб<u>очим напряжением</u> методом сравнения.

7.1.3.2 Для обеспечения безопасности при проведении измерений объекты измерения должны быть снабжены присоединительными устройствами, состоящими из параллельно соединенных защитных резисторов (Rno и Rnx) и разрядников.

7.1.3.3 Токи помех в такой схеме обусловлены разностями потенциалов между точками заземления измерителя и резисторов Rno и Rnx.

7.1.3.4 Необходимым условием компенсации помех является наличие информации о сопротивлениях указанных защитных резисторов.

7.1.3.5 Кроме этого, необходим вспомогательный резистор Ru типа C2-29В номинальным сопротивлением 1 кОм \pm 0,05 %, мощность не менее 0,25 Вт.

7.1.3.6 Измерения диэлектрических параметров с компенсацией помех общего вида выполняются в три этапа.

7.1.3.7 На первом этапе собирается схема, как показано на рисунке 50, а к измерителю подключаются токи Io1 и Ix1, представляющие собой суммы токов через объекты и токов помех.

7.1.3.8 На экран пульта ДУ кратковременно выводится наименование текущего подрежима, а затем команда оператору начать первый этап измерений:

СОБЕРИТЕ СХЕМУ Измерения Io I×
🖓 🕈 20:26 📾 🖲 🕬
Рисунок 51

7.1.3.9 На этом этапе измерений к входам измерителя подключаются токи, представляющие собой суммы токов через объекты измерения и токов помех.

7.1.3.10 Убедиться в правильности подключения измерителя и собранной измерительной схемы, нажать кнопку [Inter], запустить первый этап измерений.

7.1.3.11 Спустя один-два интервала заданного времени усреднения на экране пульта ДУ отобразятся актуальные рассчитанные величины. Отслеживать обновление данных по истечение интервала усреднения можно по вращающемуся кружку в строке статуса индикатора: каждые 5 с или 1 мин он инвертируется и меняет направление вращения в зависимости от выбранного времени усреднения.

7.1.3.12 Для прерывания измерений на любом этапе и выхода в верхний уровень меню используйте кнопку [Esc].

7.1.3.13 Условием окончания этапа измерения будут стабильные повторяющиеся значения отображаемых параметров. По нажатию кнопки набор данных (токи Io1 и Ix1), отображающийся в этот момент на экране пульта ДУ, будет зафиксирован в качестве результатов первого этапа. При необходимости сохранения измеренных величин на SD-карте нажмите кнопку .

7.1.3.14 На втором этапе собирается схема, как показано на рисунках 52, а к измерителю подключаются токи соответственно Io2, Ix2, представляющие собой полный ток через объект измерения, либо только ток помехи.

7.1.3.15 На экране пульта ДУ будет выведено указание собрать схему измерения помехи на входе «Х». При этом к входу «О» подключается полный ток, а ко входу «Х» - только ток помехи.

7.1.3.16 Нажатие кнопки запускает второй этап измерений. По истечении двух-трех интервалов усреднения, когда на экране будут отображаться стабильные повторяющиеся значения, нажмите кнопку Еnter и зафиксируйте набор отображаемых данных (токи Io2 и Ix2) в качестве результатов второго этапа. При необходимости сохранения измеренных величин на SD-карте нажмите кнопку .

7.1.3.17 На третьем этапе собирается схема, как показано на рисунках 55, а к измерителю подключаются токи Io3, Ix3, представляющие собой полный ток через объект измерения, либо только ток помехи

7.1.3.18 Затем, аналогично предыдущему этапу, на экран выводится указание собрать схему измерения помехи на входе «О». Ко входу «Х» подключается полный ток, а ко входу «О» - ток помехи.

7.1.3.19 Нажатие кнопки запускает третий этап измерений. Дождитесь стабильных повторяющихся данных спустя два-три интервала усреднения и зафиксируйте кнопкой Enter результаты третьего этапа измерений (токи Io3 и Ix3). При необходимости сохранения измеренных величин на SD-карте нажмите кнопку .

Io=30.836 мкА	
Ix=33.291 мкА	
<i>f</i> = 50.000Гц	
$\delta = 0.012^{\circ}$	
🖓 ¥ 21:34 📖 🖲 🕪	
Рисунок 57	

7.1.3.20 Расчет результирующих значений выполняется на основании трех пар измеренных значений векторов Io, Ix на первом, втором и третьем этапе.

7.1.3.21 В завершении на экран выводится информационное сообщение, а затем отображаются результаты вычислений – расчетных токов, представляющих векторные разности полных токов и токов помех, а также других параметров, определенных по рассчитанным токам:

7.1.3.22 Для переключения между двумя экранами с рассчитанными параметрами используйте кнопки 🔄, 🔄. При необходимости сохранения измеренных величин на SD-карте нажмите кнопку 😒.

7.1.4 Подрежим «ИЗМЕРЕНИЕ С КОМПЕНСАЦИЕЙ ТОКОВ ВЛИЯНИЯ»

7.1.4.1 Измерение диэлектрических параметров с компенсацией токов влияния осуществляется в два этапа, по «прямой» схеме, как показано на рисунке 59

Рисунок 59

где:

- TV1 – исследуемый высоковольтный трансформатор,

- Сх – измеряемый объект (конденсатор),

- Со – образцовый конденсатор с высокопотенциальным выводом ВП и низкопотенциальным выводом НП,

- переключатель П используется для компенсации токов влияния, наводимых от посторонних источников в цепь измеряемого объекта.

7.1.4.2 На первом этапе, когда переключатель П находится в положении «О», производится измерение и запоминается первая пара векторных величин Io1 и Ix1.

7.1.4.3 В начале измерений на экран пульта ДУ кратковременно выводится информационное сообщение, а затем выводится команда оператору начать первый этап измерений:

7.1.4.4 Убедившись в правильности подключения измерителя и собранной измерительной схемы, нажмите кнопку **Enter**, запустив первый этап измерений. Спустя два-три интервала заданного времени усреднения на экране пульта ДУ отобразятся актуальные рассчитанные величины. Отслеживать обновление данных по прошествии интервала усреднения можно по вращающемуся кружку в строке статуса индикатора. Для прерывания измерений на любом этапе и выхода в верхний

7.1.4.5 Измерения будут продолжаться, пока оператор не сочтет отображаемые данные «устоявшимися», свободными от случайных «выбросов» и не нажмет кнопку **Enter** и тогда набор данных (токи Io1 и Ix1), отображаемых в этот момент на индикаторе будет зафиксирован в качестве результатов первого этапа. При необходимости сохранения измеренных величин на SD-карте нажмите кнопку

7.1.4.6 Затем подается команда на переключение переключателя П в положение «180», т.е на смену фазы питающего напряжения на противоположное.

7.1.4.7 При этом оба измеряемых тока изменяют свою фазу на 180 градусов, а ток влияния от посторонних источников остается неизменным, что эквивалентно изменению фазы тока влияния на 180 градусов при неизменных фазах измеряемых токов.

7.1.4.8 На экран будет выведена команда на смену фазы питающего напряжения и начало второго этапа измерений:

7.1.4.9 Выполнив перекоммутацию измерительной схемы, нажмите кнопку **Enter** и запустите второй этап измерений.

7.1.4.10 Затем необходимо выждать два-три интервала усреднения и убедившись в стабильности отображаемых данных нажать кнопку зафиксировав результаты второго этапа измерений – токи Io2 и Ix2. При необходимости сохранения измеренных величин на SD-карте нажмите кнопку .

7.1.4.11 В завершении на экран выводится информационное сообщение, а затем отображаются результаты вычислений.

РАСЧЕТНЫЙ Результат	Iо=17.276 мкА Iх=39.378 мкА Cx= 2279.480 пФ tgб=0.00014 ?>↑ 15:17 篇 ♀ <<	f = 49.981 Γι δ = 0.008° Up = 0.055κB Co = 1000.030 πΦ ♀ ₹ 15:17 ♥ ⊂◆
	Рисунок 63	

7.1.4.12 Измеренные значения векторных величин Io2 и Ix2 запоминаются на втором этапе измерения.

7.1.4.13 Расчет результирующих значений выполняется на основании двух пар измеренных значений Io1, Ix1 и Io2, Ix2 на первом и втором этапах.

7.1.4.14 При этом действующее значение тока на входе «О» берется равным действующему значению тока Іо из первой пары. Ток на входе «Х» рассчитывается как векторная полусумма тока Ix1 и тока Ix2, приведенного по амплитуде, т.е. умноженного на отношение Io1/Io2. При этом токи влияния взаимно вычитаются.

7.1.4.15 Для переключения между двумя экранами с рассчитанными параметрами используйте кнопки 🐼, 🐼. При необходимости сохранения измеренных величин на SD-карте нажмите кнопку 😒.

7.1.5 Режим «КОЭФФИЦИЕНТ ТРАНСФОРМАЦИИ»

7.1.5.2 В этом режиме измеритель измеряет два переменных напряжения и угол сдвига фаз между ними.

7.1.5.3 Возможно два варианта подключения напряжений к измерителю. В первом варианте напряжения подключаются к входным разъемам измерителя «Uo» и «Ux», причем более высокое напряжение следует подключать к входу «Uo». Примеры подключения трансформаторов для первого варианта (т.е. для входов «Uo» и «Ux») показаны на рисунках 65 и 66.

7.1.5.4 На рисунке показана схема подключения измерителя при определении коэффициента трансформации однофазно<u>го</u> трансформатора.

7.1.5.5 Схема подключения измерителя для определения коэффициента трансформации и группы соединения обмоток трехфазного трансформатора (для варианта выполнения обмоток «звезда-треугольник») приведена на рисунке 66. Для определения группы обмоток необходимо установить закорачивающее устройство между выводами фазы «А». К этой же группе необходимо подключить корпус измерителя. В этой схеме на корпусе измерителя присутствует напряжение относительно «земли». Измеритель следует установить на опорный изолятор.

Рисунок 66

7.1.5.6 При измерениях с подключением к входам «Io5A» и «Ix5A» и использованием трансформаторов тока с дополнительными резисторами схемы подключения аналогичны приведенным выше.

7.1.5.7 Используя кнопки 🐼, 🈎 выберите вариант подключения ИБ и нажмите кнопку Епter.

7.1.5.8 В случае, если режим выбирается первый раз после включения питания измерителя, будет предложено просмотреть значения параметров, влияющих на вычисляемые величины. При последующих переключениях запрос подтверждения заданных параметров выдаваться уже не будет.

7.1.5.9 В зависимости от выбранного режима это будут либо коэффициенты передачи внешних блоков KU0 и KUX, либо значения сопротивлений дополнительных резисторов Ro и Rx, подключенных к трансформаторам тока перед входами «О» и «Х».

7.1.5.10 Если реальные параметры собранной измерительной схемы совпадают с заданными, нажмите кнопку Enter, а если необходима коррекция, используйте кнопку Еsc для перехода в меню установки этих коэффициентов.

Рисунок 68

7.1.5.11 Спустя два-три интервала заданного времени усреднения после перехода в режим измерения на экране пульта ДУ отобразятся актуальные рассчитанные величины.

7.1.5.12 Для первого варианта подключения (входы «Uo» и «Ux») отображаются следующие величины:

- действующее значение напряжения на входе «О» с учетом коэффициента передачи внешнего блока UV = U0/KU0

- действующее значение напряжения на входе «Х» с учетом коэффициента передачи внешнего блока UN = UX/KUX;

- вычисленное значение частоты f;

- угол сдвига фаз между измеряемыми сигналами фХ;
- коэффициент трансформации KT = UV/UN;

- группа трансформатора согласно ГОСТ 3484.

·		
Uv= 500.0464B		Kt= 2.000
Un= 250.0206B		ГРУППА:
<i>f</i> = 49.998Гц		Kuo= 0.100
Ψ= 5.001°		Kux= 0.100
🖓 ¥ 18:04 📾 🖲 C+		🔋 🕈 18:05 📾 🖬 🗲
	Duovuor 60	

Рисунок 69

7.1.5.13 Для сохранения измеренных величин на SD-карте нажмите кнопку , на графическом индикаторе пульта ДУ будет выведено информационное сообщение об успешной записи данных в файл «Koeff_trans.csv».

Рисунок 70

7.1.5.14 В случае невозможности записи будет выведено информационное сообщение об ошибке записи. В этом случае следует убедиться в наличии и работоспособности SD-карты в слоте ИБ. Для возврата к отображению измеренных величин используйте кнопку [Esc].

Запись данных
в Файл
Koeff_trans.csv
Ошибка записи
/

7.1.5.15 Во втором варианте каждое измеряемое напряжение подключается через дополнительный резистор к первичной обмотке дополнительного трансформатора тока (с единичным коэффициентом передачи по току), а вторичные обмотки этих трансформаторов тока подключаются через кабели «Io5A» и «Ix5A» к одноименным токовым входам измерителя. Этот вариант подключения напряжений используется в тех случаях, когда измеряются напряжения от незаземленных источников.

7.1.5.16 Для второго варианта подключения (входы «Io5A» и «Ix5A») отображаются следующие величины:

- действующее значение напряжения на входе «О» $UV = I0 \cdot R0;$
- действующее значение напряжения на входе «Х» $UN = UX \cdot RX;$
- вычисленное значение частоты f;
- угол сдвига фаз между измеряемыми сигналами фХ;

- коэффициент трансформации KT = UV/UN;

- группа трансформатора согласно ГОСТ 3484.

7.1.5.17 Для переключения между двумя экранами с рассчитанными параметрами используйте кнопки 🔄, 🔄. При необходимости сохранения измеренных величин на SD-карте нажмите кнопку 😎.

7.1.6 Режим «МОЩНОСТЬ»

7.1.6.1 Нажмите кнопку U на лицевой панели ИБ и пульта ДУ, после включения измерителя и установления Bluetooth-соединение.

7.1.6.2 Используя необходимые кабели, подключите измеритель к собранной схеме измерений.

7.1.6.3 На рисунке 73 приведена схема непосредственного подключения измерителя, при питании измерительной схемы от однофазного заземленного источника напряжения, которая также используется и для подключения измерителя при работе в режиме «Импеданс».

7.1.6.4 В этой схеме корпус измерителя заземлять не следует, а к земле необходимо подключить центральный провод кабеля «Ix5A». Экранный провод кабеля «Ix5A» следует подключить к объекту измерения. Центральный провод кабеля «Uo» подключить к фазному напряжению, а экранный провод этого кабеля не подключать.

Рисунок 73

7.1.6.5 Схема непосредственного подключения измерителя при питании измерительной схемы от линейного трехфазного источника показана на рисунке 74. В схеме на корпусе измерителя присутствует напряжение относительно «земли». Измеритель следует установить на опорный изолятор.

Рисунок 74

7.1.6.6 При использовании внешних трансформаторов напряжения и тока для расширения диапазона измерения следует руководствоваться схемой, приведенной на рисунке 75.

7.1.6.7 На рисунках 73, 74 и 75 источник питания необходимо подключать через автоматический выключатель (AB), рассчитанный на ток отключения 6 А.

7.1.6.8 При помощи кнопок 🐼, 🐼, 🐼 выберите пункт «Мощность» в меню выбора режимов работы и нажмите кнопку Епter.

7.1.6.9 В этом режиме по опорному каналу «О» осуществляется измерение напряжения, поданного на объект измерения, а по измерительному каналу «Х» - тока, протекающего через объект.

7.1.6.10 При этом возможны два варианта подключения напряжения опорного канала «О».

7.1.6.11 В первом варианте напряжение подключаются к разъему «Uo» измерителя.

7.1.6.12 Во втором варианте напряжение подключается через дополнительный резистор и трансформатор тока соответствующим кабелем к разъему «Io5A».

7.1.6.13 Для измерения силы тока через объект в обоих случаях используется вход «Ix5A».

7.1.6.14 В режиме «Мощность» непосредственно измеряются действующее значение напряжения Uo или тока Io5A, тока Ix5A, а также угол сдвига фаз между ними ϕ X и частота f.

7.1.6.15 Поскольку в схемах измерения ток, протекающий через вход «Х» измерителя, равен сумме тока, через объект измерения, и тока, через вход «О» измерителя, то измеритель автоматически корректирует погрешность измерения тока через вход «Х» путем расчета векторной разности измеренного тока и расчетного тока через вход «О».

7.1.6.16 Используя кнопки 🔄, 🏵 выберите вариант подключения ИБ и нажмите кнопку Епter.

·	•	_	
	ПОДКЛЮЧЕНИЕ ко входам u0,I×		ПОДКЛЮЧЕНИЕ Ко входам Цо,I×
	ПОДКЛЮЧЕНИЕ Ко входам Io,I×		ПОДКЛЮЧЕНИЕ Ко входам Io,IX
		· _	

7.1.6.17 В случае если режим выбирается первый раз после включения питания измерителя, будет предложено просмотреть значения параметров, влияющих на вычисляемые величины. При последующих переключениях запрос подтверждения заданных параметров выдаваться уже не будет. В зависимости от выбранного режима это будут либо коэффициент передачи внешнего блока KUo , либо значение сопротивления дополнительного резистора Ro, а также коэффициент трансформации внешнего трансформатора тока KIX и значения поправок углов сдвига фаз «δо» и «δХо» для внешних цепей, включенных соответственно перед входами «О» и «Х». Если реальные параметры собранной измерительной схемы совпадают с заданными, нажмите кнопку Enter, а если необходима коррекция, используйте кнопку Esc для перехода в меню установки этих коэффициентов.

ПОДТВЕРДИТЕ Заданные Параметры и Коэффициенты Да/Нет(Ent/Esc)	Кио= 0.100 Кіх= 0.500 бо=-0.001° бох=+0.001°	Ro= 10.000 кОм Kix= 0.500 бо=-0.001° бох=+0.001°
Рисунок 78		

7.1.6.18 Спустя два-три интервала заданного времени усреднения после перехода в режим измерения на экране пульта ДУ отобразятся актуальные рассчитанные величины:

- действующее значение напряжения на входе «О» с учетом коэффициента передачи внешнего блока (для первого варианта подключения) Uo = Uou/KUo;

– действующее значение напряжения на входе «О» по измеренному току «Io5A» с учетом сопротивления дополнительного резистора Ro Uo = Io \cdot Ro;

 ток через объект по входу «Х» с учетом коэффициента передачи внешнего блока Ix=Ix5Au/KIx;

- вычисленное значение частоты f;

- угол сдвига фаз между измеряемыми сигналами с учетом поправок фазовых уг-

лов $\phi X = \phi X + \delta o - \delta x o$;

- полная мощность $S = Uo \cdot Ix;$
- активная мощность $P = Uo \cdot Ix \cdot cos(\phi X);$
- реактивная мощность $Q = Uo \cdot Ix \cdot sin(\phi X);$
- коэффициент мощности cos(ϕ X).

Uo=1000.2744B		S=	4.002 xBA
Ix= 4.001A		P =	3.466 кВт
<i>f</i> = 49.998Гц		Q=	2.002 xBAp
Ψ= 30.006°		cos	(_{фx})=0.866
የ 👎 18:37 📾 🕒 🕪		Ŷ > † :	18:36 📾 🖌 🖛
Рисунок 79			

7.1.6.19 Для переключения между двумя экранами с рассчитанными параметрами используйте кнопки 🖒, 🔄.

Для сохранения измеренных величин на SD-карте нажмите кнопку 7.1.6.20 №, на графическом индикаторе пульта ДУ будет выведено информационное сообщение об успешной записи данных в файл «Power.csv».

Рисунок 80

7.1.6.21 В случае невозможности записи будет выведено информационное сообщение об ошибке записи. В этом случае следует убедиться в наличии и работоспособности SD-карты в слоте измерительного блока. Для возврата к Esc отображению измеренных величин используйте кнопку

7.1.7 Режим «ИМПЕНДАНС»

Нажмите кнопку 🕛 на лицевой панели ИБ и пульта ДУ, после 7.1.7.1 включения измерителя и установления Bluetooth-соединение.

Используя кабели из комплекта поставки, подключите измеритель 7.1.7.2 к собранной схеме измерений. В качестве примеров руководствуйтесь схемами подключения измерителя, приведенными на рисунках 73, 74 и 75.

В этом режиме к входу «Uo» подключается напряжение, поданное 7.1.7.3 на объект измерения, а на вход «Ix5A» - ток, протекающий через объект. Измеряются действующие значения напряжения Uo и силы тока Ix5A, а также угол сдвига фаз между ними фХ и частота f.

7.1.7.4 Поскольку в схемах измерения ток, протекающий через вход «Х» измерителя, равен сумме тока, через объект измерения, и тока, через вход «О» измерителя, то измеритель автоматически корректирует погрешность измерения тока, протекающего через вход «Х», путем расчета векторной разности измеренного тока и расчетного тока через вход «О».

Используя кнопки 🔄, 🔄, 🔄, 😎, выберите пункт «Импеданс» в 7.1.7.5 меню выбора режимов работы и нажмите кнопку [Enter].

7.1.7.6 В случае если режим выбирается первый раз после включения питания измерителя, будет предложено просмотреть значения параметров, влияющих на вычисляемые величины. При последующих переключениях запрос подтверждения заданных параметров выдаваться уже не будет. В режиме векторных вычислений используются значения коэффициенты передачи и трансформации KUo и KIx, а также значения поправок углов фазового сдвига «бо» и «бхо» для внешних цепей, включенных соответственно перед входами «О» и «Х». Если реальные параметры собранной измерительной схемы совпадают с заданными, нажмите кнопку собранной измерительной схемы совпадают с заданными, в меню установки этих коэффициентов.

7.1.7.7 Спустя два-три интервала заданного времени усреднения после перехода в режим измерения на экране пульта ДУ отобразятся актуальные рассчитанные величины:

- действующее значение напряжения на входе «О» с учетом коэффициента передачи внешнего блока Uo = Uou/KUo;

- ток через объект по входу «Х» с учетом коэффициента передачи внешнего блока Ix= Ix5Au/KIx ;

- вычисленное значение частоты f;

– угол сдвига фаз между измеряемыми сигналами с учетом поправок фазовых углов $\phi X = \phi X + \delta o$ - δxo .

7.1.7.8 Параметры полного сопротивления рассчитываются либо для последовательной схемы замещения (для объектов, имеющих индуктивный характер), либо для параллельной схемы замещения (для объектов, имеющих емкостный характер).

7.1.7.9 Для объектов индуктивного характера рассчитываются:

- активное сопротивление по последовательной схеме замещения Rs=(Uo/Ix)·cos(qX);

- индуктивность $L = (Uo/Ix) \cdot sin(\phi X)/(2 \cdot \pi \cdot f);$

- полное сопротивление Zx = Uo/Ix.

7.1.7.10 Для объектов емкостного характера рассчитываются:

- активное сопротивление по параллельной схеме замещения Rp = (Uo/Ix)/cos(ϕ X);

- емкость $C = (Ix/Uo) \cdot |sin(\phi X)|/(2 \cdot \pi \cdot f);$

- полное сопротивление Zx = Uo/Ix.

7.1.7.11 Для переключения между двумя экранами с рассчитанными параметрами используйте кнопки 🔄, 🔄.

7.1.7.12 Для сохранения измеренных величин на SD-карте нажмите кнопку , на графическом индикаторе пульта ДУ будет выведено информационное сообщение об успешной записи данных в файл «Impedance.csv».

7.1.7.13 В случае невозможности записи будет выведено информационное сообщение об ошибке записи. В этом случае следует убедиться в наличии и работоспособности SD-карты в слоте измерительного блока. Для возврата к отображению измеренных величин используйте кнопку [Esc].

Рисунок 86

7.1.8 Режим «ВЕКТОРЫ»

7.1.8.1 Нажмите кнопку О на лицевой панели ИБ и пульта ДУ, после включения измерителя и установления Bluetooth-соединение

7.1.8.2 Используя необходимые кабели, подключите измеритель к собранной схеме измерений. Используя кнопки 🔄, 🔄, 🐼, 🐼 выберите пункт «Векторы» в меню выбора режимов работы пульта ДУ и нажмите кнопку Епter.

7.1.8.3 В случае если режим выбирается первый раз после включения питания измерителя, будет предложено просмотреть значения параметров, влияющих на вычисляемые величины. При последующих переключениях запрос подтверждения заданных параметров выдаваться уже не будет. В режиме векторных вычислений используются значения коэффициентов передачи внешних блоков и коэффициентов трансформации внешних токов. Если реальные параметры собранной измерительной

Enter

схемы совпадают с заданными, нажмите кнопку

коррекция, используйте кнопку коэффициентов. Кроме того, для вычисления углов сдвига фаз используются значения поправок углов «бо» и «бхо» для внешних цепей, включенных соответственно перед входами «О» и «Х». Эти параметры также необходимо проконтролировать.

а если необходима

ПОДТВЕРДИТЕ ЗАДАННЫЕ ПАРАМЕТРЫ И КОЭФФИЦИЕНТЫ Да/Нет(Ent/Esc)	Kuo= 0.100 Kux= 0.100 Kio= 0.500 Kix= 0.500	УСТ.ВРЕМЕНИ УСТ.Co,tgCo,бо УСТ.КОЭФ-ТОВ УСТ.Ro и Rx
Рисунок 88		

7.1.8.4 Если измеритель подключен непосредственно к измеряемой схеме, без масштабирующих блоков, то правка параметров необязательна, так как есть возможность просматривать как непосредственно измеренные, так и отмасштабированные значения. Либо можно выставить единичные коэффициенты и нулевые поправки углов сдвига фаз.

7.1.8.5 Для выбора опорного входа «О» и измерительного входа «Х» используйте кнопки , Ф, Ф, Ф, ч , а затем нажмите *Enter* для подтверждения выбора и отправки команды на перекоммутацию входов.

7.1.8.6 Спустя два-три интервала заданного времени усреднения на экране пульта ДУ отобразятся актуальные рассчитанные величины, причем первые пять секунд в строке статуса будут графически отображаться выбранные опорный и измерительный входы.

Рисунок 90

7.1.8.7 Величины, рассчитываемые в режиме векторных измерений:

- угол сдвига фаз между измеряемыми сигналами с учетом либо без учета поправок фазовых углов $\phi X = \phi X + \delta o - \delta xo;$

- действующее значение сигнала на входе "0" с учетом либо без учета коэффициента передачи внешнего блока Uo = Uou/KUo или Iou = Io/KIo;

- действующее значение сигнала на входе "Х" с учетом либо без учета коэффициента передачи внешнего блока Ux = Uxu/KUx или Ix = Ixu/KIx;

- вычисленное значение частоты f.

7.1.8.8 Для просмотра рассчитанных величин с учетом или без учета масштабирующих коэффициентов используйте кнопки 🔄, 🔄. При этом переключение режимов отображения будет сопровождаться информационными сообщениями.

7.1.8.9 Первый измерительный экран после перехода в режим векторных измерений всегда отображается с учетом масштабирующих коэффициентов.

48	Версия: 001
	Май 2017

7.1.8.10 Для сохранения измеренных величин на SD-карте нажмите кнопку , на графическом индикаторе пульта ДУ будет выведено информационное сообщение об успешной записи данных в файл «Vectors.csv».

7.1.8.11 В случае невозможности записи будет выведено информационное сообщение об ошибке записи. В этом случае следует убедиться в наличии и работоспособности SD-карты в слоте измерительного блока. Для возврата к отображению измеренных величин используйте кнопку [Esc].

7.1.9 Режим «РЕГИСТРАЦИЯ»

7.1.9.1 В данном разделе описаны настраиваемые параметры и основные команды для работы с накопителем формата SD или SDHC, используемым при регистрации данных.

7.1.9.2 Перед работой необходимо вставить исправную SD-карту в слот на лицевой панели ИБ, убедиться, что карта вставлена правильно и в работе измерителя не возникло никаких ошибок.

7.1.9.3 Все измеряемые величины могут быть записаны в файлы данных, расположенные в корневом каталоге SD. При этом каждому режиму работы соответствует свой файл формата «*.csv» с определенным именем:

- режим «Диэлектрические параметры» файл «Dielectric.csv»;
- режим «Коэффициент трансформации» файл «Koeff_trans.csv»;
- режим «Мощность» файл «Power.csv»;
- режим «Импеданс» файл «Impedance.csv»;
- режим «Векторы» файл «Vectors.csv»;

7.1.9.4 Для «ручной» записи данных на SD-карту необходимо нажать кнопку 🐼 во время отображения на графическом индикаторе пульта ДУ вычисленных данных в любом режиме измерений.

7.1.9.5 Каждая новая запись добавляет в файл данных, соответствующий текущему режиму работы, новую строку. Если же файла, соответствующего нужному режиму на SD-карте нет – он создается заново. В файл записываются все доступные к измерению (вычислению) в выбранном режиме и подрежиме величины. Если в выбранном подрежиме какая-либо величина не может быть измерена, то соответствующее поле записи остается пустым.

7.1.9.6 Если запись данных на SD-карту невозможна, то на пульте ДУ отображается сообщение «Ошибка записи SDcard».

7.1.9.7 Каждая запись, кроме численных значений измеренных величин, включает в себя дату и время измерений, серийный номер измерителя и подрежим

работы, что позволяет легко идентифицировать конкретные измерения при последующем анализе файла.

7.1.9.8 Для просмотра И анализа записанных файлов может использоваться программа Excel из пакета MS Office или подобное альтернативное ΠО.

Экран управления режимом регистрации представляет собой 7.1.9.9 меню, позволяющее выбрать один из пунктов:

настройки режима регистрации;

просмотр информации о SD-карте и записанных файлах;

параметры и уставки для запуска автоматической регистрации по таймеру или заданным значениям измеряемых параметров;

запуск / останов автоматической регистрации измеренных параметров;

Рисунок 95

Пункт «НАСТРОЙКИ» позволяет: 7.1.9.10

- Выбрать режим работы дискретного выхода при регистрации данных;
 - Выбрать тип системного разделителя в записываемом файле данных;
- Отформатировать SD-карту;

Для выбора нужного пункта воспользуйтесь кнопками 🔯 🐼 и 7.1.9.11 Esc

Enter Для возврата (выхода в меню верхнего уровня) используйте кнопку

Пункт «ДИСКРЕТ» позволяет настроить работу дискретного 7.1.9.12 выхода, клеммы которого расположены на лицевой панели, при записи информации на SD-карту. При этом возможно выбрать постоянное замыкание «сухого контакта» по первому факту записи, кратковременное (около 1 сек) замыкание, либо не использовать дискретный выход.

	<u>дискрет</u> разделитель формат sd-card Рисунок 96	
ДИСКРЕТ ПРИ Регистрации	ДИСКРЕТ ПРИ Регистрации	ДИСКРЕТ ПРИ Регистрации
Замыкание 📈	Замыкание 🗌	Замыкание 🗌
Импульс 🗌	Импачес 🛛	Импачес 🗌
Запрещен 🗌	Запрещен 🗌	Запрещен 📈
	D 0(

Рисунок 96а

7.1.9.13 Пункт «РАЗДЕЛИТЕЛЬ» позволяет выбрать тип системного разделителя (точка или запятая) в формируемых csv-файлах регистрации. Следует отметить, что каждая новая запись регистрируемых параметров добавляет строку в файле, а выбранная настройка распространяется только на определенном последующие записи, не меняя уже записанной ранее информации. Поэтому при изменении системного разделителя рекомендуется удалить с SD-карты или переименовать ранее записанные файлы регистрации, чтобы избежать использования в одном файле разных типов системных разделителей.

7.1.9.14 Пункт «ФОРМАТ SD-CARD» позволяет запустить процесс форматирования SD-карты.

7.1.9.15 При этом следует иметь ввиду, что форматирование SD-карты переинициализирует файловую систему и, соответственно, удалит все ранее записанные данные, о чем перед началом процедуры форматирования выводится соответствующее предупреждение.

7.1.9.16 Для запуска форматирования необходимо нажать кнопку Для отмены и возврата (выхода в меню верхнего уровня) используйте кнопку Все Рекомендуется все же для подготовки и форматирования SD-карт воспользоваться ПК или ноутбуком, так как работа с накопителями большой емкости практически полностью загружает ресурсы встроенного микроконтроллера измерительного блока.

7.1.9.17 Время выполнения операции зависит от емкости используемой SD-карты и может составлять до нескольких минут. В это время ИБ не реагирует на команды пульта ДУ и нажатия кнопок на лицевой панели. Для экстренного прерывания процесса форматирования можно удалить SD-карту из слота ИБ.

лини ленине удали
Форматирование SD-CARD
Ждите.
Рисунок 99

7.1.9.18 При успешном окончании процесса форматирования кратковременно отображается информационное сообщение, после чего пульт ДУ переходит к отображению меню регистрации. При возникновении ошибок в процессе также выводится соответствующее сообщение. Для возврата в меню верхнего уровня используйте кнопку Еsc.

7.1.9.19 В случае возникновения ошибок при форматировании рекомендуется извлечь SD-карту из слота, выждать 3-5 с или перезагрузить ИБ, затем вставить карту и повторить процедуру, либо отформатировать SD-карту на ПК.

7.2 Порядок работ по окончании измерений

7.2.1 После окончания измерений необходимо:

- снять высокое напряжение со схемы;

- наложить временное заземление на высоковольтный провод повышающей обмотки трансформатора напряжения;

- длительным нажатием кнопки 🕐 на пульте ДУ инициировать выключение прибора;

- подтвердить выключение прибора нажатием кнопки

ВЫКЛЮЧИТЬ Измеритель?
Да/Heт(Ent/Esc)

Рисунок 101

7.2.2 Выключить ИБ можно также длительным нажатием кнопки U.

8 ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

8.1 Введенный в эксплуатацию измеритель не требует специального технического обслуживания, кроме периодического осмотра и очистки корпуса и контактных поверхностей от загрязнений.

8.2 Смена АКБ ИБ производится только на предприятии-изготовителе перед проведением периодической поверки по предварительному согласованию с заказчиком.

8.3 Очистку можно производить только при снятых измеряемых сигналах и отключенном питании!

8.4 Для очистки корпуса от загрязнений использовать сухую кисть или ветошь, для очистки контактов – ветошь или вату, смоченную этиловым спиртом.

8.5 Не применяйте для очистки бензин, ацетон и прочие органически активные вещества!

9 ТЕКУЩИЙ РЕМОНТ

9.1 Ремонт измерителя может осуществлять только изготовитель или организации им уполномоченные.

9.2 Измеритель предъявляется в ремонт в упаковке и полной комплектации

10 ХРАНЕНИЕ

10.1 Порядок упаковывания при постановке измерителя на хранение в соответствии с 5.2 настоящего руководства.

10.2 Условия хранения, в части воздействия климатических факторов, по ГОСТ 15150, группа 5.

10.3 Запрещается хранить пульт ДУ с установленными элементами питания. Это может привести к вытеканию электролита и повреждению пульта ДУ.

10.4 Складирование измерителей штабелями не более 5 шт. в высоту.

11 ТРАНСПОРТИРОВАНИЕ

11.1 По условиям транспортирования, в части воздействия механических факторов внешней среды, измеритель относится к группе 4 по ГОСТ 22261 и является пригодным для перевозки в хорошо амортизированных видах транспорта (самолетами, судами, железнодорожным транспортом, безрельсовым наземным транспортом). Требования ГОСТ 22261, в данном случае, распространяется на изделие в таре.

11.2 Условия транспортирования, в части воздействия климатических факторов, соответствуют группе 4 по ГОСТ 22261.

12 ТАРА И УПАКОВКА

12.1 Упаковка, в части воздействия климатических факторов внешней среды, по ГОСТ 22261, группа 4.

12.2 Упаковка, в части воздействия механических факторов внешней среды, по ГОСТ 22261, группа 4.

12.3 Габаритные размеры тары, не более (360х170х290) мм.

12.4 Масса брутто, не более 13 кг.

13 МАРКИРОВАНИЕ И ПЛОМБИРОВАНИЕ

13.1 На приборе указаны: наименование, тип, товарный знак предприятияизготовителя, национальный знак соответствия, знак утверждения типа, заводской номер, год выпуска, обозначения входных и выходных цепей, номинальное напряжение, род тока и частота питающей сети.

13.2 На упаковке указано: наименование и тип изделия, заводской номер, товарный знак и наименование предприятия изготовителя, номер технических условий на изделие.

13.3 Пломбирование прибора произведено пломбировочной лентой, идентифицирующей вскрытие. Пломбы не вскрывать!

14 ГАРАНТИИ ИЗГОТОВИТЕЛЯ.

14.1 Изготовитель гарантирует соответствие параметров измерителя параметров изоляции «ПАРМА ТЕНЗОР-2», прошедшего приемо-сдаточные испытания и опломбированного клеймом ОТК предприятия-изготовителя, требованиям технических условий ТУ 4221-026-31920409-2015 при соблюдении условий эксплуатации, хранения и транспортирования.

14.2 Пломбирование измерителя произведено пломбировочной лентой, идентифицирующей вскрытие. Пломбы не вскрывать!

14.3 Гарантийный срок эксплуатации 18 месяцев со дня ввода в эксплуатацию.

14.4 Гарантийный срок хранения 6 месяцев с момента изготовления изделия.

15 ПОРЯДОК ПРЕДЪЯВЛЕНИЯ РЕКЛАМАЦИЙ.

15.1 При предъявлении рекламации необходимо указать тип и дату выпуска измерителя, заводской номер, сообщение об ошибке или внешние проявления неисправности.

16 УТИЛИЗАЦИЯ

16.1 Утилизация измерителя осуществляется в соответствии с правилами утилизации, принятыми в эксплуатирующей организации.

17 ПРИЛОЖЕНИЕ А

(справочное)

Индикация состояния измерителя на панели измерительного блока и информационные сообщения на пульте ДУ об ошибках измерителя

Индикация состояния измерителя осуществляется с помощью трех светодиодных индикаторов на панели измерительного блока. Режим индикации – независимый, т.е. каждый индикатор отображает определенный аспект состояния измерителя или функционального узла.

Индикатор 🕅 отображает режим работы измерителя, питание и заряд АКБ:

Мигает с периодом	Заряд АКБ (при подключенном сетевом кабеле и выключен-
около 3 с	ном приборе). Степень заряда можно оценить по скважности
	мигания - чем большее время индикатор горит, тем выше
	степень заряда АКБ.
Мигает с частотой	Измеритель включен в режиме активных измерений.
около 8 Гц	
Мигает с частотой	Измеритель включен в ждущем режиме.
около 2 Гц	
Выключен	Измеритель выключен. Сетевой кабель не подключен.

Индикатор 🕴 отображает состояние модуля Bluetooth и интерфейса связи:

Мигает с частотой	Модуль ВТ включен и ожидает установки соединения.
около 2 Гц	
Мигает с периодом	Модуль ВТ включен. Соединение установлено.
около 5 с	
Вспыхивает два раза с	Модуль ВТ неинициализирован или неисправен.
периодом около 5 с	

Индикатор 🛆 сигнализирует об ошибках, возникающих при старте и работе ИБ:

Коротко вспыхивает с	Критическое снижение напряжения АКБ. Необходимо заря-
периодом около 12 с	дить аккумуляторную батарею ИБ.
Коротко вспыхивает	Сбой часов реального времени. Необходимо выставить акту-
два раза с периодом	альные время и дату.
около 12 с	
Коротко вспыхивает	Критическое снижение напряжения АКБ и сбиты часы. Необ-
один раз, а затем два	ходимо зарядить АКБ и выставить актуальные время и дату.
раза с периодом око-	
ло 6 с	
Коротко вспыхивает	Сбой при обращении к памяти. Перезапустите ИБ.
три раза с периодом	
около 6 с	
Мигает с частотой	Критическая программная ошибка. Перезапустите ИБ.
около 2 Гц	
Горит почти постоян-	Критическая аппаратная ошибка. Перезапустите ИБ.
но, изредка гаснет с	
периодом около 12 с	

Информационное сообщение	Описание			
Инициализация: Выполнена Включение ВТ-модуля: Готов	Ошибок обнаружено не было. Пульт ДУ готов к работе и установке Bluetooth-соединения с измери- тельным блоком.			
Инициализация: Ошибка	Сбой при самотестировании. Необходима переза- грузка ИБ и пульта ДУ. Если после перезагрузки ошибка не устранилась, свяжитесь с предприяти- ем-изготовителем.			
АППАРАТНАЯ Ошибка Тестирования				
Инициализация: Выполнена Включение ВТ-модэля: Ошибка ОШИБКА ОБМЕНА С ВТ-МОДУЛЕМ	Bluetooth-модуль представляет собой встраивае- мый автономный блок, настройка которого проис- ходит отдельно. Если после перезагрузки ошибка не устранилась, свяжитесь с предприятием- изготовителем.			
НЕДОСТАТОЧНОЕ Напряжение Питания Пду	Напряжение питания пульта ДУ снизилось до кри- тического уровня. Работа измерителя заблокирова- на. Необходимо заменить или зарядить элементы питания пульта ДУ.			
Режим работы: Измерения Усреднение: 5с Ошибок нет Статус прибора	Нормальная работа измерителя. Данное сообщение отображается в пункте меню «О ПРИБОРЕ».			
Режим работы: Авар.останов Аппаратная ошибка Ŷ`♥ 21:10 ≪>	Критическая ошибка. Продолжение работы невоз- можно. Необходимо извлечь SD-карту и перезагру- зить измеритель. Если после перезагрузки ошибка не устранилась, свяжитесь с предприятием- изготовителем.			
Режим работы: Измерения Ошибка уст.времени ♀>↑21:15 СФ	Ошибка установки времени и даты. Возникает при глубоком разряде АКБ. Не влияет на работу измерителя в режиме измерений, но препятствует запуску режима регистрации. Установите текущие дату и время.			
Режим работы: Измерения Перегрузка по входу ♀↑14:27 €Ф	Перегрузка опорного и/или измерительного входа. Вычисленные данные недостоверны. Необходимо уменьшить входные сигналы до допустимого уровня, либо снять сигналы и перезагрузить ИБ. Если после перезагрузки ошибка не устранилась, свяжитесь с предприятием-изготовителем.			
НИЗКИЙ УРОВЕНЬ СИГНАЛОВ В ОПОРНОМ И Измерит.Каналах ? > 12:47 至 0 ≪> Перегрузка Опорного и Измерит.Каналов ? ? 13:09 = 0 с+	Уровень сигнала в соответствующем канале в лю- бом режиме работы ниже и/или превышает допус- тимый порог: - для каналов напряжения [0,9 В 550 В]; - для слаботочных каналов [8 мкА 110 мА]; - для сильноточных каналов [0,05 А 5,5 А].			

Информационное сообщение	Описание			
Режим работы: Измерения Ошибка записи SDcard XI Статус прибора	Ошибка записи данных на SD-карту. Возникает при невозможности записи данных на карту памяти. Препятствует запуску режима регистрации.			
Режим работы: Измерения Необходим заряд АКБ ♀>↑13:45 Ё €Ф	Необходимо зарядить АКБ ИБ. Не влияет на функ- ционирование. Дублируется пиктограммой уровня заряда в строке статуса.			

Примечания:

Индикация разряда АКБ измерительного блока включается при остаточной емкости около 10-15 % от номинала. При этом остаточное время работы до критического снижения напряжения АКБ и отключения измерителя составляет 1-4 часа. Нежелательно допускать критический разряд АКБ

Сбой часов реального времени может произойти при критическом разряде АКБ, либо (очень редко) при электромагнитном воздействии на измеритель.

Сбой при обращении к памяти может возникнуть при включении измерителя (при считывании калибровочных коэффициентов и идентификационных данных), при перезаписи параметров с пульта ДУ, а также при работе с SD-картой. При повторном выполнении операции и перезагрузке измерителя возможно нормальное продолжение работы.

Критическая программная ошибка может возникнуть при электромагнитных воздействиях на измеритель и, как правило, после его перезапуска не повторяется.

Критическая аппаратная ошибка означает, что какой-то функциональный узел не прошел самотестирование или «не отвечает». Если после перезагрузки ошибка не устранилась, свяжитесь с предприятием-изготовителем.

Сообщения о перегрузке опорного/измерительного канала имеют больший приоритет, чем сообщения о низком уровне сигнала. Так, например, если на опорном канале уровень сигнала превышает предельно допустимый, а измерительный канал отключен, то будет отображаться сообщение о перегрузке в опорном канале, а после его устранения – сообщение о низком уровне сигнала в измерительном канале.

Сообщения о перегрузке опорного/измерительного канала и низком уровне сигнала можно отключить в меню настроек измерительного блока. Метрологическая достоверность вычисленных параметров будет зависеть от того, находятся ли уровни входных сигналов в допустимом диапазоне.

18 ПРИЛОЖЕНИЕ Б

N⁰	Номера листов				Всего	N⁰	Bx. №	Под-	Дата
ИЗМ.	изменен-	заменен-	новых	аннули-	листов	док-та	сопро-	пись	
	ных	ных		po-	в док-		вод. док-		
				ванных	те		та и дата		
1	1	1					1	1	

Лист регистрации изменений